Subversion Repository Public Repository

Nextrek

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
//   WebP encoder: internal header.
//
// Author: Skal (pascal.massimino@gmail.com)

#ifndef WEBP_ENC_VP8ENCI_H_
#define WEBP_ENC_VP8ENCI_H_

#include "string.h"     // for memcpy()
#include "../webp/encode.h"
#include "../dsp/dsp.h"
#include "../utils/bit_writer.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

//------------------------------------------------------------------------------
// Various defines and enums

// version numbers
#define ENC_MAJ_VERSION 0
#define ENC_MIN_VERSION 1
#define ENC_REV_VERSION 3

// size of histogram used by CollectHistogram.
#define MAX_COEFF_THRESH   64

// intra prediction modes
enum { B_DC_PRED = 0,   // 4x4 modes
       B_TM_PRED = 1,
       B_VE_PRED = 2,
       B_HE_PRED = 3,
       B_RD_PRED = 4,
       B_VR_PRED = 5,
       B_LD_PRED = 6,
       B_VL_PRED = 7,
       B_HD_PRED = 8,
       B_HU_PRED = 9,
       NUM_BMODES = B_HU_PRED + 1 - B_DC_PRED,  // = 10

       // Luma16 or UV modes
       DC_PRED = B_DC_PRED, V_PRED = B_VE_PRED,
       H_PRED = B_HE_PRED, TM_PRED = B_TM_PRED
     };

enum { NUM_MB_SEGMENTS = 4,
       MAX_NUM_PARTITIONS = 8,
       NUM_TYPES = 4,   // 0: i16-AC,  1: i16-DC,  2:chroma-AC,  3:i4-AC
       NUM_BANDS = 8,
       NUM_CTX = 3,
       NUM_PROBAS = 11,
       MAX_LF_LEVELS = 64,      // Maximum loop filter level
       MAX_VARIABLE_LEVEL = 67  // last (inclusive) level with variable cost
     };

// YUV-cache parameters. Cache is 16-pixels wide.
// The original or reconstructed samples can be accessed using VP8Scan[]
// The predicted blocks can be accessed using offsets to yuv_p_ and
// the arrays VP8*ModeOffsets[];
//         +----+      YUV Samples area. See VP8Scan[] for accessing the blocks.
//  Y_OFF  |YYYY| <- original samples  (enc->yuv_in_)
//         |YYYY|
//         |YYYY|
//         |YYYY|
//  U_OFF  |UUVV| V_OFF  (=U_OFF + 8)
//         |UUVV|
//         +----+
//  Y_OFF  |YYYY| <- compressed/decoded samples  ('yuv_out_')
//         |YYYY|    There are two buffers like this ('yuv_out_'/'yuv_out2_')
//         |YYYY|
//         |YYYY|
//  U_OFF  |UUVV| V_OFF
//         |UUVV|
//          x2 (for yuv_out2_)
//         +----+     Prediction area ('yuv_p_', size = PRED_SIZE)
// I16DC16 |YYYY|  Intra16 predictions (16x16 block each)
//         |YYYY|
//         |YYYY|
//         |YYYY|
// I16TM16 |YYYY|
//         |YYYY|
//         |YYYY|
//         |YYYY|
// I16VE16 |YYYY|
//         |YYYY|
//         |YYYY|
//         |YYYY|
// I16HE16 |YYYY|
//         |YYYY|
//         |YYYY|
//         |YYYY|
//         +----+  Chroma U/V predictions (16x8 block each)
// C8DC8   |UUVV|
//         |UUVV|
// C8TM8   |UUVV|
//         |UUVV|
// C8VE8   |UUVV|
//         |UUVV|
// C8HE8   |UUVV|
//         |UUVV|
//         +----+  Intra 4x4 predictions (4x4 block each)
//         |YYYY| I4DC4 I4TM4 I4VE4 I4HE4
//         |YYYY| I4RD4 I4VR4 I4LD4 I4VL4
//         |YY..| I4HD4 I4HU4 I4TMP
//         +----+
#define BPS       16   // this is the common stride
#define Y_SIZE   (BPS * 16)
#define UV_SIZE  (BPS * 8)
#define YUV_SIZE (Y_SIZE + UV_SIZE)
#define PRED_SIZE (6 * 16 * BPS + 12 * BPS)
#define Y_OFF    (0)
#define U_OFF    (Y_SIZE)
#define V_OFF    (U_OFF + 8)
#define ALIGN_CST 15
#define DO_ALIGN(PTR) ((uintptr_t)((PTR) + ALIGN_CST) & ~ALIGN_CST)

extern const int VP8Scan[16 + 4 + 4];           // in quant.c
extern const int VP8UVModeOffsets[4];           // in analyze.c
extern const int VP8I16ModeOffsets[4];
extern const int VP8I4ModeOffsets[NUM_BMODES];

// Layout of prediction blocks
// intra 16x16
#define I16DC16 (0 * 16 * BPS)
#define I16TM16 (1 * 16 * BPS)
#define I16VE16 (2 * 16 * BPS)
#define I16HE16 (3 * 16 * BPS)
// chroma 8x8, two U/V blocks side by side (hence: 16x8 each)
#define C8DC8 (4 * 16 * BPS)
#define C8TM8 (4 * 16 * BPS + 8 * BPS)
#define C8VE8 (5 * 16 * BPS)
#define C8HE8 (5 * 16 * BPS + 8 * BPS)
// intra 4x4
#define I4DC4 (6 * 16 * BPS +  0)
#define I4TM4 (6 * 16 * BPS +  4)
#define I4VE4 (6 * 16 * BPS +  8)
#define I4HE4 (6 * 16 * BPS + 12)
#define I4RD4 (6 * 16 * BPS + 4 * BPS +  0)
#define I4VR4 (6 * 16 * BPS + 4 * BPS +  4)
#define I4LD4 (6 * 16 * BPS + 4 * BPS +  8)
#define I4VL4 (6 * 16 * BPS + 4 * BPS + 12)
#define I4HD4 (6 * 16 * BPS + 8 * BPS +  0)
#define I4HU4 (6 * 16 * BPS + 8 * BPS +  4)
#define I4TMP (6 * 16 * BPS + 8 * BPS +  8)

typedef int64_t score_t;     // type used for scores, rate, distortion
#define MAX_COST ((score_t)0x7fffffffffffffLL)

#define QFIX 17
#define BIAS(b)  ((b) << (QFIX - 8))
// Fun fact: this is the _only_ line where we're actually being lossy and
// discarding bits.
static inline int QUANTDIV(int n, int iQ, int B) {
  return (n * iQ + B) >> QFIX;
}
extern const uint8_t VP8Zigzag[16];

//------------------------------------------------------------------------------
// Headers

typedef uint8_t ProbaArray[NUM_CTX][NUM_PROBAS];
typedef uint64_t StatsArray[NUM_CTX][NUM_PROBAS][2];
typedef uint16_t CostArray[NUM_CTX][MAX_VARIABLE_LEVEL + 1];
typedef double LFStats[NUM_MB_SEGMENTS][MAX_LF_LEVELS];  // filter stats

typedef struct VP8Encoder VP8Encoder;

// segment features
typedef struct {
  int num_segments_;      // Actual number of segments. 1 segment only = unused.
  int update_map_;        // whether to update the segment map or not.
                          // must be 0 if there's only 1 segment.
  int size_;              // bit-cost for transmitting the segment map
} VP8SegmentHeader;

// Struct collecting all frame-persistent probabilities.
typedef struct {
  uint8_t segments_[3];     // probabilities for segment tree
  uint8_t skip_proba_;      // final probability of being skipped.
  ProbaArray coeffs_[NUM_TYPES][NUM_BANDS];      // 924 bytes
  StatsArray stats_[NUM_TYPES][NUM_BANDS];       // 7.4k
  CostArray level_cost_[NUM_TYPES][NUM_BANDS];   // 11.4k
  int use_skip_proba_;      // Note: we always use skip_proba for now.
  int nb_skip_;             // number of skipped blocks
} VP8Proba;

// Filter parameters. Not actually used in the code (we don't perform
// the in-loop filtering), but filled from user's config
typedef struct {
  int simple_;             // filtering type: 0=complex, 1=simple
  int level_;              // base filter level [0..63]
  int sharpness_;          // [0..7]
  int i4x4_lf_delta_;      // delta filter level for i4x4 relative to i16x16
} VP8FilterHeader;

//------------------------------------------------------------------------------
// Informations about the macroblocks.

typedef struct {
  // block type
  unsigned int type_:2;     // 0=i4x4, 1=i16x16
  unsigned int uv_mode_:2;
  unsigned int skip_:1;
  unsigned int segment_:2;
  uint8_t alpha_;      // quantization-susceptibility
} VP8MBInfo;

typedef struct VP8Matrix {
  uint16_t q_[16];        // quantizer steps
  uint16_t iq_[16];       // reciprocals, fixed point.
  uint16_t bias_[16];     // rounding bias
  uint16_t zthresh_[16];  // value under which a coefficient is zeroed
  uint16_t sharpen_[16];  // frequency boosters for slight sharpening
} VP8Matrix;

typedef struct {
  VP8Matrix y1_, y2_, uv_;  // quantization matrices
  int alpha_;      // quant-susceptibility, range [-127,127]. Zero is neutral.
                   // Lower values indicate a lower risk of blurriness.
  int beta_;       // filter-susceptibility, range [0,255].
  int quant_;      // final segment quantizer.
  int fstrength_;  // final in-loop filtering strength
  // reactivities
  int lambda_i16_, lambda_i4_, lambda_uv_;
  int lambda_mode_, lambda_trellis_, tlambda_;
  int lambda_trellis_i16_, lambda_trellis_i4_, lambda_trellis_uv_;
} VP8SegmentInfo;

// Handy transcient struct to accumulate score and info during RD-optimization
// and mode evaluation.
typedef struct {
  score_t D, SD, R, score;    // Distortion, spectral distortion, rate, score.
  int16_t y_dc_levels[16];    // Quantized levels for luma-DC, luma-AC, chroma.
  int16_t y_ac_levels[16][16];
  int16_t uv_levels[4 + 4][16];
  int mode_i16;               // mode number for intra16 prediction
  int modes_i4[16];           // mode numbers for intra4 predictions
  int mode_uv;                // mode number of chroma prediction
  uint32_t nz;                // non-zero blocks
} VP8ModeScore;

// Iterator structure to iterate through macroblocks, pointing to the
// right neighbouring data (samples, predictions, contexts, ...)
typedef struct {
  int x_, y_;                      // current macroblock
  int y_offset_, uv_offset_;       // offset to the luma / chroma planes
  int y_stride_, uv_stride_;       // respective strides
  uint8_t*      yuv_in_;           // borrowed from enc_ (for now)
  uint8_t*      yuv_out_;          // ''
  uint8_t*      yuv_out2_;         // ''
  uint8_t*      yuv_p_;            // ''
  VP8Encoder*   enc_;              // back-pointer
  VP8MBInfo*    mb_;               // current macroblock
  VP8BitWriter* bw_;               // current bit-writer
  uint8_t*      preds_;            // intra mode predictors (4x4 blocks)
  uint32_t*     nz_;               // non-zero pattern
  uint8_t       i4_boundary_[37];  // 32+5 boundary samples needed by intra4x4
  uint8_t*      i4_top_;           // pointer to the current top boundary sample
  int           i4_;               // current intra4x4 mode being tested
  int           top_nz_[9];        // top-non-zero context.
  int           left_nz_[9];       // left-non-zero. left_nz[8] is independent.
  uint64_t      bit_count_[4][3];  // bit counters for coded levels.
  uint64_t      luma_bits_;        // macroblock bit-cost for luma
  uint64_t      uv_bits_;          // macroblock bit-cost for chroma
  LFStats*      lf_stats_;         // filter stats (borrowed from enc_)
  int           do_trellis_;       // if true, perform extra level optimisation
  int           done_;             // true when scan is finished
} VP8EncIterator;

  // in iterator.c
// must be called first.
void VP8IteratorInit(VP8Encoder* const enc, VP8EncIterator* const it);
// restart a scan.
void VP8IteratorReset(VP8EncIterator* const it);
// import samples from source
void VP8IteratorImport(const VP8EncIterator* const it);
// export decimated samples
void VP8IteratorExport(const VP8EncIterator* const it);
// go to next macroblock. Returns !done_. If *block_to_save is non-null, will
// save the boundary values to top_/left_ arrays. block_to_save can be
// it->yuv_out_ or it->yuv_in_.
int VP8IteratorNext(VP8EncIterator* const it,
                    const uint8_t* const block_to_save);
// Intra4x4 iterations
void VP8IteratorStartI4(VP8EncIterator* const it);
// returns true if not done.
int VP8IteratorRotateI4(VP8EncIterator* const it,
                        const uint8_t* const yuv_out);

// Non-zero context setup/teardown
void VP8IteratorNzToBytes(VP8EncIterator* const it);
void VP8IteratorBytesToNz(VP8EncIterator* const it);

// Helper functions to set mode properties
void VP8SetIntra16Mode(const VP8EncIterator* const it, int mode);
void VP8SetIntra4Mode(const VP8EncIterator* const it, int modes[16]);
void VP8SetIntraUVMode(const VP8EncIterator* const it, int mode);
void VP8SetSkip(const VP8EncIterator* const it, int skip);
void VP8SetSegment(const VP8EncIterator* const it, int segment);
void VP8IteratorResetCosts(VP8EncIterator* const it);

//------------------------------------------------------------------------------
// VP8Encoder

struct VP8Encoder {
  const WebPConfig* config_;    // user configuration and parameters
  WebPPicture* pic_;            // input / output picture

  // headers
  VP8FilterHeader   filter_hdr_;     // filtering information
  VP8SegmentHeader  segment_hdr_;    // segment information

  int profile_;                      // VP8's profile, deduced from Config.

  // dimension, in macroblock units.
  int mb_w_, mb_h_;
  int preds_w_;   // stride of the *preds_ prediction plane (=4*mb_w + 1)

  // number of partitions (1, 2, 4 or 8 = MAX_NUM_PARTITIONS)
  int num_parts_;

  // per-partition boolean decoders.
  VP8BitWriter bw_;                         // part0
  VP8BitWriter parts_[MAX_NUM_PARTITIONS];  // token partitions

  // transparency blob
  int has_alpha_;
  uint8_t* alpha_data_;       // non-NULL if transparency is present
  size_t alpha_data_size_;

  // enhancement layer
  int use_layer_;
  VP8BitWriter layer_bw_;
  uint8_t* layer_data_;
  size_t layer_data_size_;

  // quantization info (one set of DC/AC dequant factor per segment)
  VP8SegmentInfo dqm_[NUM_MB_SEGMENTS];
  int base_quant_;                 // nominal quantizer value. Only used
                                   // for relative coding of segments' quant.
  int uv_alpha_;                   // U/V quantization susceptibility
  // global offset of quantizers, shared by all segments
  int dq_y1_dc_;
  int dq_y2_dc_, dq_y2_ac_;
  int dq_uv_dc_, dq_uv_ac_;

  // probabilities and statistics
  VP8Proba proba_;
  uint64_t sse_[3];        // sum of Y/U/V squared errors for all macroblocks
  uint64_t sse_count_;     // pixel count for the sse_[] stats
  int      coded_size_;
  int      residual_bytes_[3][4];
  int      block_count_[3];

  // quality/speed settings
  int method_;              // 0=fastest, 6=best/slowest.
  int rd_opt_level_;        // Deduced from method_.
  int max_i4_header_bits_;  // partition #0 safeness factor

  // Memory
  VP8MBInfo* mb_info_;   // contextual macroblock infos (mb_w_ + 1)
  uint8_t*   preds_;     // predictions modes: (4*mb_w+1) * (4*mb_h+1)
  uint32_t*  nz_;        // non-zero bit context: mb_w+1
  uint8_t*   yuv_in_;    // input samples
  uint8_t*   yuv_out_;   // output samples
  uint8_t*   yuv_out2_;  // secondary scratch out-buffer. swapped with yuv_out_.
  uint8_t*   yuv_p_;     // scratch buffer for prediction
  uint8_t   *y_top_;     // top luma samples.
  uint8_t   *uv_top_;    // top u/v samples.
                         // U and V are packed into 16 pixels (8 U + 8 V)
  uint8_t   *y_left_;    // left luma samples (adressable from index -1 to 15).
  uint8_t   *u_left_;    // left u samples (adressable from index -1 to 7)
  uint8_t   *v_left_;    // left v samples (adressable from index -1 to 7)

  LFStats   *lf_stats_;  // autofilter stats (if NULL, autofilter is off)
};

//------------------------------------------------------------------------------
// internal functions. Not public.

  // in tree.c
extern const uint8_t VP8CoeffsProba0[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
extern const uint8_t
    VP8CoeffsUpdateProba[NUM_TYPES][NUM_BANDS][NUM_CTX][NUM_PROBAS];
// Reset the token probabilities to their initial (default) values
void VP8DefaultProbas(VP8Encoder* const enc);
// Write the token probabilities
void VP8WriteProbas(VP8BitWriter* const bw, const VP8Proba* const probas);
// Writes the partition #0 modes (that is: all intra modes)
void VP8CodeIntraModes(VP8Encoder* const enc);

  // in syntax.c
// Generates the final bitstream by coding the partition0 and headers,
// and appending an assembly of all the pre-coded token partitions.
// Return true if everything is ok.
int VP8EncWrite(VP8Encoder* const enc);

  // in frame.c
extern const uint8_t VP8EncBands[16 + 1];
// Form all the four Intra16x16 predictions in the yuv_p_ cache
void VP8MakeLuma16Preds(const VP8EncIterator* const it);
// Form all the four Chroma8x8 predictions in the yuv_p_ cache
void VP8MakeChroma8Preds(const VP8EncIterator* const it);
// Form all the ten Intra4x4 predictions in the yuv_p_ cache
// for the 4x4 block it->i4_
void VP8MakeIntra4Preds(const VP8EncIterator* const it);
// Rate calculation
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd);
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]);
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd);
// Main stat / coding passes
int VP8EncLoop(VP8Encoder* const enc);
int VP8StatLoop(VP8Encoder* const enc);

  // in webpenc.c
// Assign an error code to a picture. Return false for convenience.
int WebPEncodingSetError(WebPPicture* const pic, WebPEncodingError error);

  // in analysis.c
// Main analysis loop. Decides the segmentations and complexity.
// Assigns a first guess for Intra16 and uvmode_ prediction modes.
int VP8EncAnalyze(VP8Encoder* const enc);

  // in quant.c
// Sets up segment's quantization values, base_quant_ and filter strengths.
void VP8SetSegmentParams(VP8Encoder* const enc, float quality);
// Pick best modes and fills the levels. Returns true if skipped.
int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt);

  // in alpha.c
void VP8EncInitAlpha(VP8Encoder* enc);           // initialize alpha compression
void VP8EncCodeAlphaBlock(VP8EncIterator* it);   // analyze or code a macroblock
int VP8EncFinishAlpha(VP8Encoder* enc);          // finalize compressed data
void VP8EncDeleteAlpha(VP8Encoder* enc);         // delete compressed data

  // in layer.c
void VP8EncInitLayer(VP8Encoder* const enc);     // init everything
void VP8EncCodeLayerBlock(VP8EncIterator* it);   // code one more macroblock
int VP8EncFinishLayer(VP8Encoder* const enc);    // finalize coding
void VP8EncDeleteLayer(VP8Encoder* enc);         // reclaim memory

  // in filter.c
extern void VP8InitFilter(VP8EncIterator* const it);
extern void VP8StoreFilterStats(VP8EncIterator* const it);
extern void VP8AdjustFilterStrength(VP8EncIterator* const it);

//------------------------------------------------------------------------------

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

#endif  /* WEBP_ENC_VP8ENCI_H_ */

Commits for Nextrek/Android/LibrerieNextrek/jni/src/enc/vp8enci.h

Diff revisions: vs.
Revision Author Commited Message
4 FMMortaroli picture FMMortaroli Fri 19 Apr, 2013 16:54:38 +0000