Subversion Repository Public Repository

Nextrek

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Macroblock analysis
//
// Author: Skal (pascal.massimino@gmail.com)

#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "vp8enci.h"
#include "cost.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

#define MAX_ITERS_K_MEANS  6

static int ClipAlpha(int alpha) {
  return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
}

//------------------------------------------------------------------------------
// Smooth the segment map by replacing isolated block by the majority of its
// neighbours.

static void SmoothSegmentMap(VP8Encoder* const enc) {
  int n, x, y;
  const int w = enc->mb_w_;
  const int h = enc->mb_h_;
  const int majority_cnt_3_x_3_grid = 5;
  uint8_t* tmp = (uint8_t*)malloc(w * h * sizeof(uint8_t));

  if (tmp == NULL) return;
  for (y = 1; y < h - 1; ++y) {
    for (x = 1; x < w - 1; ++x) {
      int cnt[NUM_MB_SEGMENTS] = { 0 };
      const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
      int majority_seg = mb->segment_;
      // Check the 8 neighbouring segment values.
      cnt[mb[-w - 1].segment_]++;  // top-left
      cnt[mb[-w + 0].segment_]++;  // top
      cnt[mb[-w + 1].segment_]++;  // top-right
      cnt[mb[   - 1].segment_]++;  // left
      cnt[mb[   + 1].segment_]++;  // right
      cnt[mb[ w - 1].segment_]++;  // bottom-left
      cnt[mb[ w + 0].segment_]++;  // bottom
      cnt[mb[ w + 1].segment_]++;  // bottom-right
      for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
        if (cnt[n] >= majority_cnt_3_x_3_grid) {
          majority_seg = n;
        }
      }
      tmp[x + y * w] = majority_seg;
    }
  }
  for (y = 1; y < h - 1; ++y) {
    for (x = 1; x < w - 1; ++x) {
      VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
      mb->segment_ = tmp[x + y * w];
    }
  }
  free(tmp);
}

//------------------------------------------------------------------------------
// Finalize Segment probability based on the coding tree

static int GetProba(int a, int b) {
  int proba;
  const int total = a + b;
  if (total == 0) return 255;  // that's the default probability.
  proba = (255 * a + total / 2) / total;
  return proba;
}

static void SetSegmentProbas(VP8Encoder* const enc) {
  int p[NUM_MB_SEGMENTS] = { 0 };
  int n;

  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    const VP8MBInfo* const mb = &enc->mb_info_[n];
    p[mb->segment_]++;
  }
  if (enc->pic_->stats) {
    for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
      enc->pic_->stats->segment_size[n] = p[n];
    }
  }
  if (enc->segment_hdr_.num_segments_ > 1) {
    uint8_t* const probas = enc->proba_.segments_;
    probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
    probas[1] = GetProba(p[0], p[1]);
    probas[2] = GetProba(p[2], p[3]);

    enc->segment_hdr_.update_map_ =
        (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
    enc->segment_hdr_.size_ =
      p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
      p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
      p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
      p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
  } else {
    enc->segment_hdr_.update_map_ = 0;
    enc->segment_hdr_.size_ = 0;
  }
}

static inline int clip(int v, int m, int M) {
  return v < m ? m : v > M ? M : v;
}

static void SetSegmentAlphas(VP8Encoder* const enc,
                             const int centers[NUM_MB_SEGMENTS],
                             int mid) {
  const int nb = enc->segment_hdr_.num_segments_;
  int min = centers[0], max = centers[0];
  int n;

  if (nb > 1) {
    for (n = 0; n < nb; ++n) {
      if (min > centers[n]) min = centers[n];
      if (max < centers[n]) max = centers[n];
    }
  }
  if (max == min) max = min + 1;
  assert(mid <= max && mid >= min);
  for (n = 0; n < nb; ++n) {
    const int alpha = 255 * (centers[n] - mid) / (max - min);
    const int beta = 255 * (centers[n] - min) / (max - min);
    enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
    enc->dqm_[n].beta_ = clip(beta, 0, 255);
  }
}

//------------------------------------------------------------------------------
// Simplified k-Means, to assign Nb segments based on alpha-histogram

static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
  const int nb = enc->segment_hdr_.num_segments_;
  int centers[NUM_MB_SEGMENTS];
  int weighted_average;
  int map[256];
  int a, n, k;
  int min_a = 0, max_a = 255, range_a;
  // 'int' type is ok for histo, and won't overflow
  int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];

  // bracket the input
  for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
  min_a = n;
  for (n = 255; n > min_a && alphas[n] == 0; --n) {}
  max_a = n;
  range_a = max_a - min_a;

  // Spread initial centers evenly
  for (n = 1, k = 0; n < 2 * nb; n += 2) {
    centers[k++] = min_a + (n * range_a) / (2 * nb);
  }

  for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
    int total_weight;
    int displaced;
    // Reset stats
    for (n = 0; n < nb; ++n) {
      accum[n] = 0;
      dist_accum[n] = 0;
    }
    // Assign nearest center for each 'a'
    n = 0;    // track the nearest center for current 'a'
    for (a = min_a; a <= max_a; ++a) {
      if (alphas[a]) {
        while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
          n++;
        }
        map[a] = n;
        // accumulate contribution into best centroid
        dist_accum[n] += a * alphas[a];
        accum[n] += alphas[a];
      }
    }
    // All point are classified. Move the centroids to the
    // center of their respective cloud.
    displaced = 0;
    weighted_average = 0;
    total_weight = 0;
    for (n = 0; n < nb; ++n) {
      if (accum[n]) {
        const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
        displaced += abs(centers[n] - new_center);
        centers[n] = new_center;
        weighted_average += new_center * accum[n];
        total_weight += accum[n];
      }
    }
    weighted_average = (weighted_average + total_weight / 2) / total_weight;
    if (displaced < 5) break;   // no need to keep on looping...
  }

  // Map each original value to the closest centroid
  for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    VP8MBInfo* const mb = &enc->mb_info_[n];
    const int a = mb->alpha_;
    mb->segment_ = map[a];
    mb->alpha_ = centers[map[a]];     // just for the record.
  }

  if (nb > 1) {
    const int smooth = (enc->config_->preprocessing & 1);
    if (smooth) SmoothSegmentMap(enc);
  }

  SetSegmentProbas(enc);                             // Assign final proba
  SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
}

//------------------------------------------------------------------------------
// Macroblock analysis: collect histogram for each mode, deduce the maximal
// susceptibility and set best modes for this macroblock.
// Segment assignment is done later.

// Number of modes to inspect for alpha_ evaluation. For high-quality settings,
// we don't need to test all the possible modes during the analysis phase.
#define MAX_INTRA16_MODE 2
#define MAX_INTRA4_MODE  2
#define MAX_UV_MODE      2

static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
  const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
  int mode;
  int best_alpha = -1;
  int best_mode = 0;

  VP8MakeLuma16Preds(it);
  for (mode = 0; mode < max_mode; ++mode) {
    const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
                                          it->yuv_p_ + VP8I16ModeOffsets[mode],
                                          0, 16);
    if (alpha > best_alpha) {
      best_alpha = alpha;
      best_mode = mode;
    }
  }
  VP8SetIntra16Mode(it, best_mode);
  return best_alpha;
}

static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
                                   int best_alpha) {
  int modes[16];
  const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
  int i4_alpha = 0;
  VP8IteratorStartI4(it);
  do {
    int mode;
    int best_mode_alpha = -1;
    const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];

    VP8MakeIntra4Preds(it);
    for (mode = 0; mode < max_mode; ++mode) {
      const int alpha = VP8CollectHistogram(src,
                                            it->yuv_p_ + VP8I4ModeOffsets[mode],
                                            0, 1);
      if (alpha > best_mode_alpha) {
        best_mode_alpha = alpha;
        modes[it->i4_] = mode;
      }
    }
    i4_alpha += best_mode_alpha;
    // Note: we reuse the original samples for predictors
  } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));

  if (i4_alpha > best_alpha) {
    VP8SetIntra4Mode(it, modes);
    best_alpha = ClipAlpha(i4_alpha);
  }
  return best_alpha;
}

static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
  int best_alpha = -1;
  int best_mode = 0;
  const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
  int mode;
  VP8MakeChroma8Preds(it);
  for (mode = 0; mode < max_mode; ++mode) {
    const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
                                          it->yuv_p_ + VP8UVModeOffsets[mode],
                                          16, 16 + 4 + 4);
    if (alpha > best_alpha) {
      best_alpha = alpha;
      best_mode = mode;
    }
  }
  VP8SetIntraUVMode(it, best_mode);
  return best_alpha;
}

static void MBAnalyze(VP8EncIterator* const it,
                      int alphas[256], int* const uv_alpha) {
  const VP8Encoder* const enc = it->enc_;
  int best_alpha, best_uv_alpha;

  VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
  VP8SetSkip(it, 0);         // not skipped
  VP8SetSegment(it, 0);      // default segment, spec-wise.

  best_alpha = MBAnalyzeBestIntra16Mode(it);
  if (enc->method_ != 3) {
    // We go and make a fast decision for intra4/intra16.
    // It's usually not a good and definitive pick, but helps seeding the stats
    // about level bit-cost.
    // TODO(skal): improve criterion.
    best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
  }
  best_uv_alpha = MBAnalyzeBestUVMode(it);

  // Final susceptibility mix
  best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
  alphas[best_alpha]++;
  *uv_alpha += best_uv_alpha;
  it->mb_->alpha_ = best_alpha;   // Informative only.
}

//------------------------------------------------------------------------------
// Main analysis loop:
// Collect all susceptibilities for each macroblock and record their
// distribution in alphas[]. Segments is assigned a-posteriori, based on
// this histogram.
// We also pick an intra16 prediction mode, which shouldn't be considered
// final except for fast-encode settings. We can also pick some intra4 modes
// and decide intra4/intra16, but that's usually almost always a bad choice at
// this stage.

int VP8EncAnalyze(VP8Encoder* const enc) {
  int alphas[256] = { 0 };
  VP8EncIterator it;

  VP8IteratorInit(enc, &it);
  enc->uv_alpha_ = 0;
  do {
    VP8IteratorImport(&it);
    MBAnalyze(&it, alphas, &enc->uv_alpha_);
    // Let's pretend we have perfect lossless reconstruction.
  } while (VP8IteratorNext(&it, it.yuv_in_));
  enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
  AssignSegments(enc, alphas);

  return 1;
}

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

Commits for Nextrek/Android/LibrerieNextrek/jni/src/enc/analysis.c

Diff revisions: vs.
Revision Author Commited Message
4 FMMortaroli picture FMMortaroli Fri 19 Apr, 2013 16:54:38 +0000