Subversion Repository Public Repository

Nextrek

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
// Copyright 2011 Google Inc.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// SSE2 version of some decoding functions (idct, loop filtering).
//
// Author: somnath@google.com (Somnath Banerjee)
//         cduvivier@google.com (Christian Duvivier)

#if defined(__SSE2__) || defined(_MSC_VER)

#include <emmintrin.h>
#include "../dec/vp8i.h"

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)

static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) {
  // This implementation makes use of 16-bit fixed point versions of two
  // multiply constants:
  //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
  //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
  //
  // To be able to use signed 16-bit integers, we use the following trick to
  // have constants within range:
  // - Associated constants are obtained by subtracting the 16-bit fixed point
  //   version of one:
  //      k = K - (1 << 16)  =>  K = k + (1 << 16)
  //      K1 = 85267  =>  k1 =  20091
  //      K2 = 35468  =>  k2 = -30068
  // - The multiplication of a variable by a constant become the sum of the
  //   variable and the multiplication of that variable by the associated
  //   constant:
  //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
  const __m128i k1 = _mm_set1_epi16(20091);
  const __m128i k2 = _mm_set1_epi16(-30068);
  __m128i T0, T1, T2, T3;

  // Load and concatenate the transform coefficients (we'll do two transforms
  // in parallel). In the case of only one transform, the second half of the
  // vectors will just contain random value we'll never use nor store.
  __m128i in0, in1, in2, in3;
  {
    in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    // a00 a10 a20 a30   x x x x
    // a01 a11 a21 a31   x x x x
    // a02 a12 a22 a32   x x x x
    // a03 a13 a23 a33   x x x x
    if (do_two) {
      const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
      const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
      const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
      const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
      in0 = _mm_unpacklo_epi64(in0, inB0);
      in1 = _mm_unpacklo_epi64(in1, inB1);
      in2 = _mm_unpacklo_epi64(in2, inB2);
      in3 = _mm_unpacklo_epi64(in3, inB3);
      // a00 a10 a20 a30   b00 b10 b20 b30
      // a01 a11 a21 a31   b01 b11 b21 b31
      // a02 a12 a22 a32   b02 b12 b22 b32
      // a03 a13 a23 a33   b03 b13 b23 b33
    }
  }

  // Vertical pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i a = _mm_add_epi16(in0, in2);
    const __m128i b = _mm_sub_epi16(in0, in2);
    // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    const __m128i c3 = _mm_sub_epi16(in1, in3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    const __m128i d3 = _mm_add_epi16(in1, in3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);

    // Transpose the two 4x4.
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33
    const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    // a00 a10 a01 a11   a02 a12 a03 a13
    // a20 a30 a21 a31   a22 a32 a23 a33
    // b00 b10 b01 b11   b02 b12 b03 b13
    // b20 b30 b21 b31   b22 b32 b23 b33
    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    // a00 a10 a20 a30 a01 a11 a21 a31
    // b00 b10 b20 b30 b01 b11 b21 b31
    // a02 a12 a22 a32 a03 a13 a23 a33
    // b02 b12 a22 b32 b03 b13 b23 b33
    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    // a00 a10 a20 a30   b00 b10 b20 b30
    // a01 a11 a21 a31   b01 b11 b21 b31
    // a02 a12 a22 a32   b02 b12 b22 b32
    // a03 a13 a23 a33   b03 b13 b23 b33
  }

  // Horizontal pass and subsequent transpose.
  {
    // First pass, c and d calculations are longer because of the "trick"
    // multiplications.
    const __m128i four = _mm_set1_epi16(4);
    const __m128i dc = _mm_add_epi16(T0, four);
    const __m128i a =  _mm_add_epi16(dc, T2);
    const __m128i b =  _mm_sub_epi16(dc, T2);
    // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    const __m128i c3 = _mm_sub_epi16(T1, T3);
    const __m128i c4 = _mm_sub_epi16(c1, c2);
    const __m128i c = _mm_add_epi16(c3, c4);
    // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    const __m128i d3 = _mm_add_epi16(T1, T3);
    const __m128i d4 = _mm_add_epi16(d1, d2);
    const __m128i d = _mm_add_epi16(d3, d4);

    // Second pass.
    const __m128i tmp0 = _mm_add_epi16(a, d);
    const __m128i tmp1 = _mm_add_epi16(b, c);
    const __m128i tmp2 = _mm_sub_epi16(b, c);
    const __m128i tmp3 = _mm_sub_epi16(a, d);
    const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);

    // Transpose the two 4x4.
    // a00 a01 a02 a03   b00 b01 b02 b03
    // a10 a11 a12 a13   b10 b11 b12 b13
    // a20 a21 a22 a23   b20 b21 b22 b23
    // a30 a31 a32 a33   b30 b31 b32 b33
    const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    // a00 a10 a01 a11   a02 a12 a03 a13
    // a20 a30 a21 a31   a22 a32 a23 a33
    // b00 b10 b01 b11   b02 b12 b03 b13
    // b20 b30 b21 b31   b22 b32 b23 b33
    const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    // a00 a10 a20 a30 a01 a11 a21 a31
    // b00 b10 b20 b30 b01 b11 b21 b31
    // a02 a12 a22 a32 a03 a13 a23 a33
    // b02 b12 a22 b32 b03 b13 b23 b33
    T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    // a00 a10 a20 a30   b00 b10 b20 b30
    // a01 a11 a21 a31   b01 b11 b21 b31
    // a02 a12 a22 a32   b02 b12 b22 b32
    // a03 a13 a23 a33   b03 b13 b23 b33
  }

  // Add inverse transform to 'dst' and store.
  {
    const __m128i zero = _mm_set1_epi16(0);
    // Load the reference(s).
    __m128i dst0, dst1, dst2, dst3;
    if (do_two) {
      // Load eight bytes/pixels per line.
      dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]);
      dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]);
      dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]);
      dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]);
    } else {
      // Load four bytes/pixels per line.
      dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]);
      dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]);
      dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]);
      dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]);
    }
    // Convert to 16b.
    dst0 = _mm_unpacklo_epi8(dst0, zero);
    dst1 = _mm_unpacklo_epi8(dst1, zero);
    dst2 = _mm_unpacklo_epi8(dst2, zero);
    dst3 = _mm_unpacklo_epi8(dst3, zero);
    // Add the inverse transform(s).
    dst0 = _mm_add_epi16(dst0, T0);
    dst1 = _mm_add_epi16(dst1, T1);
    dst2 = _mm_add_epi16(dst2, T2);
    dst3 = _mm_add_epi16(dst3, T3);
    // Unsigned saturate to 8b.
    dst0 = _mm_packus_epi16(dst0, dst0);
    dst1 = _mm_packus_epi16(dst1, dst1);
    dst2 = _mm_packus_epi16(dst2, dst2);
    dst3 = _mm_packus_epi16(dst3, dst3);
    // Store the results.
    if (do_two) {
      // Store eight bytes/pixels per line.
      _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0);
      _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1);
      _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2);
      _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3);
    } else {
      // Store four bytes/pixels per line.
      *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0);
      *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1);
      *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2);
      *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3);
    }
  }
}

//------------------------------------------------------------------------------
// Loop Filter (Paragraph 15)

// Compute abs(p - q) = subs(p - q) OR subs(q - p)
#define MM_ABS(p, q)  _mm_or_si128(                                            \
    _mm_subs_epu8((q), (p)),                                                   \
    _mm_subs_epu8((p), (q)))

// Shift each byte of "a" by N bits while preserving by the sign bit.
//
// It first shifts the lower bytes of the words and then the upper bytes and
// then merges the results together.
#define SIGNED_SHIFT_N(a, N) {                                                 \
  __m128i t = a;                                                               \
  t = _mm_slli_epi16(t, 8);                                                    \
  t = _mm_srai_epi16(t, N);                                                    \
  t = _mm_srli_epi16(t, 8);                                                    \
                                                                               \
  a = _mm_srai_epi16(a, N + 8);                                                \
  a = _mm_slli_epi16(a, 8);                                                    \
                                                                               \
  a = _mm_or_si128(t, a);                                                      \
}

#define FLIP_SIGN_BIT2(a, b) {                                                 \
  a = _mm_xor_si128(a, sign_bit);                                              \
  b = _mm_xor_si128(b, sign_bit);                                              \
}

#define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
  FLIP_SIGN_BIT2(a, b);                                                        \
  FLIP_SIGN_BIT2(c, d);                                                        \
}

#define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) {                      \
  const __m128i zero = _mm_setzero_si128();                                    \
  const __m128i t1 = MM_ABS(p1, p0);                                           \
  const __m128i t2 = MM_ABS(q1, q0);                                           \
                                                                               \
  const __m128i h = _mm_set1_epi8(hev_thresh);                                 \
  const __m128i t3 = _mm_subs_epu8(t1, h);  /* abs(p1 - p0) - hev_tresh */     \
  const __m128i t4 = _mm_subs_epu8(t2, h);  /* abs(q1 - q0) - hev_tresh */     \
                                                                               \
  not_hev = _mm_or_si128(t3, t4);                                              \
  not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\
}

#define GET_BASE_DELTA(p1, p0, q0, q1, o) {                                    \
  const __m128i qp0 = _mm_subs_epi8(q0, p0);  /* q0 - p0 */                    \
  o = _mm_subs_epi8(p1, q1);            /* p1 - q1 */                          \
  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 1 * (q0 - p0) */          \
  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 2 * (q0 - p0) */          \
  o = _mm_adds_epi8(o, qp0);            /* p1 - q1 + 3 * (q0 - p0) */          \
}

#define DO_SIMPLE_FILTER(p0, q0, fl) {                                         \
  const __m128i three = _mm_set1_epi8(3);                                      \
  const __m128i four = _mm_set1_epi8(4);                                       \
  __m128i v3 = _mm_adds_epi8(fl, three);                                       \
  __m128i v4 = _mm_adds_epi8(fl, four);                                        \
                                                                               \
  /* Do +4 side */                                                             \
  SIGNED_SHIFT_N(v4, 3);                /* v4 >> 3  */                         \
  q0 = _mm_subs_epi8(q0, v4);           /* q0 -= v4 */                         \
                                                                               \
  /* Now do +3 side */                                                         \
  SIGNED_SHIFT_N(v3, 3);                /* v3 >> 3  */                         \
  p0 = _mm_adds_epi8(p0, v3);           /* p0 += v3 */                         \
}

// Updates values of 2 pixels at MB edge during complex filtering.
// Update operations:
// q = q - a and p = p + a; where a = [(a_hi >> 7), (a_lo >> 7)]
#define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) {                                   \
  const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7);                               \
  const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7);                               \
  const __m128i a = _mm_packs_epi16(a_lo7, a_hi7);                             \
  pi = _mm_adds_epi8(pi, a);                                                   \
  qi = _mm_subs_epi8(qi, a);                                                   \
}

static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0,
                        const __m128i* q1, int thresh, __m128i *mask) {
  __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
  *mask = _mm_set1_epi8(0xFE);
  t1 = _mm_and_si128(t1, *mask);        // set lsb of each byte to zero
  t1 = _mm_srli_epi16(t1, 1);           // abs(p1 - q1) / 2

  *mask = MM_ABS(*p0, *q0);             // abs(p0 - q0)
  *mask = _mm_adds_epu8(*mask, *mask);  // abs(p0 - q0) * 2
  *mask = _mm_adds_epu8(*mask, t1);     // abs(p0 - q0) * 2 + abs(p1 - q1) / 2

  t1 = _mm_set1_epi8(thresh);
  *mask = _mm_subs_epu8(*mask, t1);     // mask <= thresh
  *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128());
}

//------------------------------------------------------------------------------
// Edge filtering functions

// Applies filter on 2 pixels (p0 and q0)
static inline void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0,
                             const __m128i* q1, int thresh) {
  __m128i a, mask;
  const __m128i sign_bit = _mm_set1_epi8(0x80);
  const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
  const __m128i q1s = _mm_xor_si128(*q1, sign_bit);

  NeedsFilter(p1, p0, q0, q1, thresh, &mask);

  // convert to signed values
  FLIP_SIGN_BIT2(*p0, *q0);

  GET_BASE_DELTA(p1s, *p0, *q0, q1s, a);
  a = _mm_and_si128(a, mask);     // mask filter values we don't care about
  DO_SIMPLE_FILTER(*p0, *q0, a);

  // unoffset
  FLIP_SIGN_BIT2(*p0, *q0);
}

// Applies filter on 4 pixels (p1, p0, q0 and q1)
static inline void DoFilter4(__m128i* p1, __m128i *p0, __m128i* q0, __m128i* q1,
                             const __m128i* mask, int hev_thresh) {
  __m128i not_hev;
  __m128i t1, t2, t3;
  const __m128i sign_bit = _mm_set1_epi8(0x80);

  // compute hev mask
  GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);

  // convert to signed values
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);

  t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
  t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
  t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
  t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
  t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about

  // Do +4 side
  t2 = _mm_set1_epi8(4);
  t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 4
  SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
  t3 = t2;                           // save t2
  *q0 = _mm_subs_epi8(*q0, t2);      // q0 -= t2

  // Now do +3 side
  t2 = _mm_set1_epi8(3);
  t2 = _mm_adds_epi8(t1, t2);        // +3 instead of +4
  SIGNED_SHIFT_N(t2, 3);             // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
  *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2

  t2 = _mm_set1_epi8(1);
  t3 = _mm_adds_epi8(t3, t2);
  SIGNED_SHIFT_N(t3, 1);             // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4

  t3 = _mm_and_si128(not_hev, t3);   // if !hev
  *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
  *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3

  // unoffset
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
}

// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
static inline void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0,
                             __m128i* q0, __m128i* q1, __m128i *q2,
                             const __m128i* mask, int hev_thresh) {
  __m128i a, not_hev;
  const __m128i sign_bit = _mm_set1_epi8(0x80);

  // compute hev mask
  GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev);

  // convert to signed values
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
  FLIP_SIGN_BIT2(*p2, *q2);

  GET_BASE_DELTA(*p1, *p0, *q0, *q1, a);

  { // do simple filter on pixels with hev
    const __m128i m = _mm_andnot_si128(not_hev, *mask);
    const __m128i f = _mm_and_si128(a, m);
    DO_SIMPLE_FILTER(*p0, *q0, f);
  }
  { // do strong filter on pixels with not hev
    const __m128i zero = _mm_setzero_si128();
    const __m128i nine = _mm_set1_epi16(0x0900);
    const __m128i sixty_three = _mm_set1_epi16(63);

    const __m128i m = _mm_and_si128(not_hev, *mask);
    const __m128i f = _mm_and_si128(a, m);
    const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
    const __m128i f_hi = _mm_unpackhi_epi8(zero, f);

    const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine);   // Filter (lo) * 9
    const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine);   // Filter (hi) * 9
    const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo);  // Filter (lo) * 18
    const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi);  // Filter (hi) * 18

    const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three);  // Filter * 9 + 63
    const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three);  // Filter * 9 + 63

    const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three);  // F... * 18 + 63
    const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three);  // F... * 18 + 63

    const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo);  // Filter * 27 + 63
    const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi);  // Filter * 27 + 63

    UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi);
    UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi);
    UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi);
  }

  // unoffset
  FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
  FLIP_SIGN_BIT2(*p2, *q2);
}

// reads 8 rows across a vertical edge.
//
// TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
// two Load4x4() to avoid code duplication.
static inline void Load8x4(const uint8_t* b, int stride,
                           __m128i* p, __m128i* q) {
  __m128i t1, t2;

  // Load 0th, 1st, 4th and 5th rows
  __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
  __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
  __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
  __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50

  r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
  r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10

  // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
  t1 = _mm_unpacklo_epi8(r0, r1);

  // Load 2nd, 3rd, 6th and 7th rows
  r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
  r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
  r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
  r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70

  r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
  r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30

  // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
  t2 = _mm_unpacklo_epi8(r0, r1);

  // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
  // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
  r0 = t1;
  t1 = _mm_unpacklo_epi16(t1, t2);
  t2 = _mm_unpackhi_epi16(r0, t2);

  // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
  // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
  *p = _mm_unpacklo_epi32(t1, t2);
  *q = _mm_unpackhi_epi32(t1, t2);
}

static inline void Load16x4(const uint8_t* r0, const uint8_t* r8, int stride,
                            __m128i* p1, __m128i* p0,
                            __m128i* q0, __m128i* q1) {
  __m128i t1, t2;
  // Assume the pixels around the edge (|) are numbered as follows
  //                00 01 | 02 03
  //                10 11 | 12 13
  //                 ...  |  ...
  //                e0 e1 | e2 e3
  //                f0 f1 | f2 f3
  //
  // r0 is pointing to the 0th row (00)
  // r8 is pointing to the 8th row (80)

  // Load
  // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
  // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
  // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
  // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
  Load8x4(r0, stride, p1, q0);
  Load8x4(r8, stride, p0, q1);

  t1 = *p1;
  t2 = *q0;
  // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
  // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
  // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
  // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
  *p1 = _mm_unpacklo_epi64(t1, *p0);
  *p0 = _mm_unpackhi_epi64(t1, *p0);
  *q0 = _mm_unpacklo_epi64(t2, *q1);
  *q1 = _mm_unpackhi_epi64(t2, *q1);
}

static inline void Store4x4(__m128i* x, uint8_t* dst, int stride) {
  int i;
  for (i = 0; i < 4; ++i, dst += stride) {
    *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
    *x = _mm_srli_si128(*x, 4);
  }
}

// Transpose back and store
static inline void Store16x4(uint8_t* r0, uint8_t* r8, int stride, __m128i* p1,
                             __m128i* p0, __m128i* q0, __m128i* q1) {
  __m128i t1;

  // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
  // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
  t1 = *p0;
  *p0 = _mm_unpacklo_epi8(*p1, t1);
  *p1 = _mm_unpackhi_epi8(*p1, t1);

  // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
  // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
  t1 = *q0;
  *q0 = _mm_unpacklo_epi8(t1, *q1);
  *q1 = _mm_unpackhi_epi8(t1, *q1);

  // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
  // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
  t1 = *p0;
  *p0 = _mm_unpacklo_epi16(t1, *q0);
  *q0 = _mm_unpackhi_epi16(t1, *q0);

  // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
  // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
  t1 = *p1;
  *p1 = _mm_unpacklo_epi16(t1, *q1);
  *q1 = _mm_unpackhi_epi16(t1, *q1);

  Store4x4(p0, r0, stride);
  r0 += 4 * stride;
  Store4x4(q0, r0, stride);

  Store4x4(p1, r8, stride);
  r8 += 4 * stride;
  Store4x4(q1, r8, stride);
}

//------------------------------------------------------------------------------
// Simple In-loop filtering (Paragraph 15.2)

static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) {
  // Load
  __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
  __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
  __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
  __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);

  DoFilter2(&p1, &p0, &q0, &q1, thresh);

  // Store
  _mm_storeu_si128((__m128i*)&p[-stride], p0);
  _mm_storeu_si128((__m128i*)p, q0);
}

static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) {
  __m128i p1, p0, q0, q1;

  p -= 2;  // beginning of p1

  Load16x4(p, p + 8 * stride,  stride, &p1, &p0, &q0, &q1);
  DoFilter2(&p1, &p0, &q0, &q1, thresh);
  Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
}

static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4 * stride;
    SimpleVFilter16SSE2(p, stride, thresh);
  }
}

static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) {
  int k;
  for (k = 3; k > 0; --k) {
    p += 4;
    SimpleHFilter16SSE2(p, stride, thresh);
  }
}

//------------------------------------------------------------------------------
// Complex In-loop filtering (Paragraph 15.3)

#define MAX_DIFF1(p3, p2, p1, p0, m) {                                         \
  m = MM_ABS(p3, p2);                                                          \
  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
  m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
}

#define MAX_DIFF2(p3, p2, p1, p0, m) {                                         \
  m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
  m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
  m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
}

#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
  e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
  e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
  e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
  e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
}

#define LOADUV_H_EDGE(p, u, v, stride) {                                       \
  p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                               \
  p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)]));        \
}

#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
  LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
  LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
  LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
  LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
}

#define STOREUV(p, u, v, stride) {                                             \
  _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
  p = _mm_srli_si128(p, 8);                                                    \
  _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
}

#define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) {               \
  __m128i fl_yes;                                                              \
  const __m128i it = _mm_set1_epi8(ithresh);                                   \
  mask = _mm_subs_epu8(mask, it);                                              \
  mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128());                            \
  NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes);                            \
  mask = _mm_and_si128(mask, fl_yes);                                          \
}

// on macroblock edges
static void VFilter16SSE2(uint8_t* p, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i t1;
  __m128i mask;
  __m128i p2, p1, p0, q0, q1, q2;

  // Load p3, p2, p1, p0
  LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
  MAX_DIFF1(t1, p2, p1, p0, mask);

  // Load q0, q1, q2, q3
  LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
  MAX_DIFF2(t1, q2, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  // Store
  _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
  _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
  _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
  _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
  _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
  _mm_storeu_si128((__m128i*)&p[2 * stride], q2);
}

static void HFilter16SSE2(uint8_t* p, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;

  uint8_t* const b = p - 4;
  Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
  MAX_DIFF1(p3, p2, p1, p0, mask);

  Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
  MAX_DIFF2(q3, q2, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);
  Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);
}

// on three inner edges
static void VFilter16iSSE2(uint8_t* p, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  int k;
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;

  for (k = 3; k > 0; --k) {
    // Load p3, p2, p1, p0
    LOAD_H_EDGES4(p, stride, t2, t1, p1, p0);
    MAX_DIFF1(t2, t1, p1, p0, mask);

    p += 4 * stride;

    // Load q0, q1, q2, q3
    LOAD_H_EDGES4(p, stride, q0, q1, t1, t2);
    MAX_DIFF2(t2, t1, q1, q0, mask);

    COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
    DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);

    // Store
    _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
    _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
    _mm_storeu_si128((__m128i*)&p[0 * stride], q0);
    _mm_storeu_si128((__m128i*)&p[1 * stride], q1);
  }
}

static void HFilter16iSSE2(uint8_t* p, int stride,
                           int thresh, int ithresh, int hev_thresh) {
  int k;
  uint8_t* b;
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;

  for (k = 3; k > 0; --k) {
    b = p;
    Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0);  // p3, p2, p1, p0
    MAX_DIFF1(t2, t1, p1, p0, mask);

    b += 4;  // beginning of q0
    Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
    MAX_DIFF2(t2, t1, q1, q0, mask);

    COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
    DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);

    b -= 2;  // beginning of p1
    Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1);

    p += 4;
  }
}

// 8-pixels wide variant, for chroma filtering
static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
                         int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, p2, p1, p0, q0, q1, q2;

  // Load p3, p2, p1, p0
  LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
  MAX_DIFF1(t1, p2, p1, p0, mask);

  // Load q0, q1, q2, q3
  LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
  MAX_DIFF2(t1, q2, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  // Store
  STOREUV(p2, u, v, -3 * stride);
  STOREUV(p1, u, v, -2 * stride);
  STOREUV(p0, u, v, -1 * stride);
  STOREUV(q0, u, v, 0 * stride);
  STOREUV(q1, u, v, 1 * stride);
  STOREUV(q2, u, v, 2 * stride);
}

static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride,
                         int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i p3, p2, p1, p0, q0, q1, q2, q3;

  uint8_t* const tu = u - 4;
  uint8_t* const tv = v - 4;
  Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
  MAX_DIFF1(p3, p2, p1, p0, mask);

  Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
  MAX_DIFF2(q3, q2, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);

  Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0);
  Store16x4(u, v, stride, &q0, &q1, &q2, &q3);
}

static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;

  // Load p3, p2, p1, p0
  LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
  MAX_DIFF1(t2, t1, p1, p0, mask);

  u += 4 * stride;
  v += 4 * stride;

  // Load q0, q1, q2, q3
  LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
  MAX_DIFF2(t2, t1, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);

  // Store
  STOREUV(p1, u, v, -2 * stride);
  STOREUV(p0, u, v, -1 * stride);
  STOREUV(q0, u, v, 0 * stride);
  STOREUV(q1, u, v, 1 * stride);
}

static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride,
                          int thresh, int ithresh, int hev_thresh) {
  __m128i mask;
  __m128i t1, t2, p1, p0, q0, q1;
  Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
  MAX_DIFF1(t2, t1, p1, p0, mask);

  u += 4;  // beginning of q0
  v += 4;
  Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
  MAX_DIFF2(t2, t1, q1, q0, mask);

  COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask);
  DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);

  u -= 2;  // beginning of p1
  v -= 2;
  Store16x4(u, v, stride, &p1, &p0, &q0, &q1);
}

extern void VP8DspInitSSE2(void);

void VP8DspInitSSE2(void) {
  VP8Transform = TransformSSE2;

  VP8VFilter16 = VFilter16SSE2;
  VP8HFilter16 = HFilter16SSE2;
  VP8VFilter8 = VFilter8SSE2;
  VP8HFilter8 = HFilter8SSE2;
  VP8VFilter16i = VFilter16iSSE2;
  VP8HFilter16i = HFilter16iSSE2;
  VP8VFilter8i = VFilter8iSSE2;
  VP8HFilter8i = HFilter8iSSE2;

  VP8SimpleVFilter16 = SimpleVFilter16SSE2;
  VP8SimpleHFilter16 = SimpleHFilter16SSE2;
  VP8SimpleVFilter16i = SimpleVFilter16iSSE2;
  VP8SimpleHFilter16i = SimpleHFilter16iSSE2;
}

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

#endif   //__SSE2__ || _MSC_VER

Commits for Nextrek/Android/LibrerieNextrek/jni/src/dsp/dec_sse2.c

Diff revisions: vs.
Revision Author Commited Message
4 FMMortaroli picture FMMortaroli Fri 19 Apr, 2013 16:54:38 +0000