Subversion Repository Public Repository

Divide-Dependencies

This repository has no backups
This repository's network speed is throttled to 100KB/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2018 NVIDIA Corporation. All rights reserved.


#ifndef APEX_CSG_DEFS_H
#define APEX_CSG_DEFS_H

#include "ApexUsingNamespace.h"
#include "ApexSharedUtils.h"
#include "ApexRand.h"
#include "Link.h"
#include "authoring/ApexCSG.h"
#include "authoring/ApexCSGMath.h"
#include "authoring/ApexGSA.h"
#include "PsUserAllocated.h"
#include "ApexGSA.h"

#ifndef WITHOUT_APEX_AUTHORING

namespace ApexCSG
{

// Binary tree node
class BinaryNode
{
public:
	PX_INLINE					BinaryNode();

	PX_INLINE	void			setChild(uint32_t index, BinaryNode* child);

	PX_INLINE	void			detach();

	PX_INLINE	BinaryNode*		getParent()						const
	{
		return m_parent;
	}

	PX_INLINE	BinaryNode*		getChild(uint32_t index)	const
	{
		PX_ASSERT((index & 1) == index);
		return m_children[index & 1];
	}

	PX_INLINE	uint32_t	getIndex()						const
	{
		return m_index;
	}

protected:
	BinaryNode*		m_parent;
	BinaryNode*		m_children[2];
	uint32_t	m_index;	// index of this node in parent (0xFFFFFFFF => not attached)
};

PX_INLINE
BinaryNode::BinaryNode()
{
	m_index = 0xFFFFFFFF;
	m_children[1] = m_children[0] = m_parent = NULL;
}

PX_INLINE void
BinaryNode::setChild(uint32_t index, BinaryNode* child)
{
	index &= 1;
	BinaryNode*& oldChild = m_children[index];

	if (oldChild != NULL)
	{
		oldChild->detach();
	}

	oldChild = child;

	if (child != NULL)
	{
		child->detach();
		child->m_parent = this;
		child->m_index = index;
	}
}

PX_INLINE void
BinaryNode::detach()
{
	if (m_parent != NULL)
	{
		PX_ASSERT(m_parent->getChild(m_index) == this);
		m_parent->m_children[m_index & 1] = NULL;
		m_parent = NULL;
		m_index = 0xFFFFFFFF;
	}
}


// CSG mesh representation

class UV : public Vec<Real, 2>
{
public:

	PX_INLINE				UV()							{}
	PX_INLINE				UV(const float* uv)
	{
		set((Real)uv[0], (Real)uv[1]);
	}
	PX_INLINE				UV(const double* uv)
	{
		set((Real)uv[0], (Real)uv[1]);
	}
	PX_INLINE	UV&			operator = (const UV& uv)
	{
		el[0] = uv.el[0];
		el[1] = uv.el[1];
		return *this;
	}

	PX_INLINE	void		set(Real u, Real v)
	{
		el[0] = u;
		el[1] = v;
	}

	PX_INLINE	const Real&	u() const
	{
		return el[0];
	}
	PX_INLINE	const Real&	v() const
	{
		return el[1];
	}
};

class Color : public Vec<Real, 4>
{
public:

	PX_INLINE					Color()									{}
	PX_INLINE					Color(const uint32_t c);
	PX_INLINE	Color&			operator = (const Color& c)
	{
		el[0] = c.el[0];
		el[1] = c.el[1];
		el[2] = c.el[2];
		el[3] = c.el[3];
		return *this;
	}

	PX_INLINE	void			set(Real r, Real g, Real b, Real a)
	{
		el[0] = r;
		el[1] = g;
		el[2] = b;
		el[3] = a;
	}

	PX_INLINE	uint32_t	toInt() const;

	PX_INLINE	const Real&		r() const
	{
		return el[0];
	}
	PX_INLINE	const Real&		g() const
	{
		return el[1];
	}
	PX_INLINE	const Real&		b() const
	{
		return el[2];
	}
	PX_INLINE	const Real&		a() const
	{
		return el[3];
	}
};

PX_INLINE
Color::Color(const uint32_t c)
{
	const Real recip255 = 1 / (Real)255;
	set((Real)(c & 0xFF)*recip255, (Real)((c >> 8) & 0xFF)*recip255, (Real)((c >> 16) & 0xFF)*recip255, (Real)(c >> 24)*recip255);
}

PX_INLINE uint32_t
Color::toInt() const
{
	return (uint32_t)((int)(255 * el[3] + (Real)0.5)) << 24 | (uint32_t)((int)(255 * el[2] + (Real)0.5)) << 16 | (uint32_t)((int)(255 * el[1] + (Real)0.5)) << 8 | (uint32_t)((int)(255 * el[0] + (Real)0.5));
}

struct VertexData
{
	Dir		normal;
	Dir		tangent;
	Dir		binormal;
	UV		uv[nvidia::VertexFormat::MAX_UV_COUNT];
	Color	color;
};

struct Triangle
{
	Pos				vertices[3];
	Dir				normal;
	Real			area;
	int32_t	submeshIndex;
	uint32_t	smoothingMask;
	uint32_t	extraDataIndex;

	void	fromExplicitRenderTriangle(VertexData vertexData[3], const nvidia::ExplicitRenderTriangle& tri)
	{
		for (unsigned i = 0; i < 3; ++i)
		{
			vertices[i] = Pos(tri.vertices[i].position);
			vertexData[i].normal = Dir(tri.vertices[i].normal);
			vertexData[i].tangent = Dir(tri.vertices[i].tangent);
			vertexData[i].binormal = Dir(tri.vertices[i].binormal);
			for (unsigned j = 0; j < nvidia::VertexFormat::MAX_UV_COUNT; ++j)
			{
				vertexData[i].uv[j] = UV(&tri.vertices[i].uv[j][0]);
			}
			vertexData[i].color.set((Real)tri.vertices[i].color.r, (Real)tri.vertices[i].color.g, (Real)tri.vertices[i].color.b, (Real)tri.vertices[i].color.a);
		}
		submeshIndex = tri.submeshIndex;
		smoothingMask = tri.smoothingMask;
		extraDataIndex = tri.extraDataIndex;
		calculateQuantities();
	}

	void	toExplicitRenderTriangle(nvidia::ExplicitRenderTriangle& tri, const VertexData vertexData[3]) const
	{
		for (unsigned i = 0; i < 3; ++i)
		{
			tri.vertices[i].position = ApexCSG::GSA::toPxVec3(vertices[i]);
			tri.vertices[i].normal = ApexCSG::GSA::toPxVec3(vertexData[i].normal);
			tri.vertices[i].tangent = ApexCSG::GSA::toPxVec3(vertexData[i].tangent);
			tri.vertices[i].binormal = ApexCSG::GSA::toPxVec3(vertexData[i].binormal);
			for (unsigned j = 0; j < nvidia::VertexFormat::MAX_UV_COUNT; ++j)
			{
				tri.vertices[i].uv[j].set((float)vertexData[i].uv[j][0], (float)vertexData[i].uv[j][1]);
			}
			tri.vertices[i].color.set((float)vertexData[i].color.r(), (float)vertexData[i].color.g(), (float)vertexData[i].color.b(), (float)vertexData[i].color.a());
		}
		tri.submeshIndex = submeshIndex;
		tri.smoothingMask = smoothingMask;
		tri.extraDataIndex = extraDataIndex;
	}

	void	calculateQuantities()
	{
		const Dir e0 = Dir(vertices[1] - vertices[0]);
		const Dir e1 = Dir(vertices[2] - vertices[1]);
		const Dir e2 = Dir(vertices[0] - vertices[2]);
		normal = (e0^e1) + (e1^e2) + (e2^e0);
		area = (Real)0.5 * normal.normalize();
	}

	void	transform(const Mat4Real& tm)
	{
		for (int i = 0; i < 3; ++i)
		{
			vertices[i] = tm*vertices[i];
		}
		calculateQuantities();
	}
};

struct LinkedVertex : public nvidia::Link
{
	LinkedVertex*	getAdj(uint32_t which) const
	{
		return (LinkedVertex*)nvidia::Link::getAdj(which);
	}

	Pos	vertex;
};

struct LinkedEdge2D : public nvidia::Link
{
	LinkedEdge2D() : loopID(-1) {}
	~LinkedEdge2D()
	{
		remove();
	}

	void			setAdj(uint32_t which, LinkedEdge2D* link)
	{
		// Ensure neighboring links' adjoining vertices are equal
		which &= 1;
		const uint32_t other = which ^ 1;
		v[which] = link->v[other];
		((LinkedEdge2D*)link->adj[other])->v[which] = ((LinkedEdge2D*)adj[which])->v[other];
		nvidia::Link::setAdj(which, link);
	}

	LinkedEdge2D*	getAdj(uint32_t which) const
	{
		return (LinkedEdge2D*)nvidia::Link::getAdj(which);
	}

	void			remove()
	{
		// Ensure neighboring links' adjoining vertices are equal
		((LinkedEdge2D*)adj[0])->v[1] = ((LinkedEdge2D*)adj[1])->v[0] = (Real)0.5 * (v[0] + v[1]);
		nvidia::Link::remove();
	}

	Vec2Real		v[2];
	int32_t	loopID;
};

struct Surface
{
	uint32_t	planeIndex;
	uint32_t	triangleIndexStart;
	uint32_t	triangleIndexStop;
	float	totalTriangleArea;	// Keeping it 32-bit real, since we don't need precision here
};

struct Region
{
	uint32_t	side;

	// Not to be serialized, but we have this extra space since Region is used in a union with Surface
	uint32_t	tempIndex1;
	uint32_t	tempIndex2;
	uint32_t	tempIndex3;
};


// Interpolator - calculates interpolation data for triangle quantities
class Interpolator
{
public:

	enum VertexField
	{
		Normal_x, Normal_y, Normal_z,
		Tangent_x, Tangent_y, Tangent_z,
		Binormal_x, Binormal_y, Binormal_z,
		UV0_u, UV0_v, UV1_u, UV1_v, UV2_u, UV2_v, UV3_u, UV3_v,
		Color_r, Color_g, Color_b, Color_a,

		VertexFieldCount
	};

	Interpolator()															{}
	Interpolator(const Triangle& tri, const VertexData vertexData[3])
	{
		setFromTriangle(tri, vertexData);
	}
	Interpolator(const Dir tangents[3], const Vec<Real, 2>& uvScale)
	{
		setFlat(tangents, uvScale);
	}

	PX_INLINE void	setFromTriangle(const Triangle& tri, const VertexData vertexData[3]);
	PX_INLINE void	setFlat(const Dir tangents[3], const Vec<Real, 2>& uvScale);

	PX_INLINE void	interpolateVertexData(VertexData& vertexData, const Pos& point) const;

	PX_INLINE bool	equals(const Interpolator& interpolator, Real frameDirTol, Real frameScaleTol, Real dirTol, Real uvTol, Real colorTol) const;

	PX_INLINE void	transform(Interpolator& transformedInterpolator, const Mat4Real& tm, const Mat4Real& cofTM) const;

	void	serialize(physx::PxFileBuf& stream) const;
	void	deserialize(physx::PxFileBuf& stream, uint32_t version);

private:
	ApexCSG::Plane	m_frames[VertexFieldCount];
	static size_t	s_offsets[VertexFieldCount];

	friend class InterpolatorBuilder;
};

PX_INLINE void
Interpolator::setFromTriangle(const Triangle& tri, const VertexData vertexData[3])
{
	const Pos& p0 = tri.vertices[0];
	const Pos& p1 = tri.vertices[1];
	const Pos& p2 = tri.vertices[2];
	const Dir p1xp2 = Dir(p1) ^ Dir(p2);
	const Dir p2xp0 = Dir(p2) ^ Dir(p0);
	const Dir p0xp1 = Dir(p0) ^ Dir(p1);
	const Dir n = p1xp2 + p2xp0 + p0xp1;
	const Real n2 = n | n;
	if (n2 < EPS_REAL * EPS_REAL)
	{
		for (uint32_t i = 0; i < VertexFieldCount; ++i)
		{
			m_frames[i].set(Dir((Real)0), 0);
		}
		return;
	}

	// Calculate inverse 4x4 matrix (only need first three columns):
	const Dir nP = n / n2;	// determinant is -n2
	const Dir Q0(nP[2] * (p1[1] - p2[1]) - nP[1] * (p1[2] - p2[2]), nP[2] * (p2[1] - p0[1]) - nP[1] * (p2[2] - p0[2]), nP[2] * (p0[1] - p1[1]) - nP[1] * (p0[2] - p1[2]));
	const Dir Q1(nP[0] * (p1[2] - p2[2]) - nP[2] * (p1[0] - p2[0]), nP[0] * (p2[2] - p0[2]) - nP[2] * (p2[0] - p0[0]), nP[0] * (p0[2] - p1[2]) - nP[2] * (p0[0] - p1[0]));
	const Dir Q2(nP[1] * (p1[0] - p2[0]) - nP[0] * (p1[1] - p2[1]), nP[1] * (p2[0] - p0[0]) - nP[0] * (p2[1] - p0[1]), nP[1] * (p0[0] - p1[0]) - nP[0] * (p0[1] - p1[1]));
	const Dir r(nP | p1xp2, nP | p2xp0, nP | p0xp1);

	for (uint32_t i = 0; i < VertexFieldCount; ++i)
	{
		const size_t offset = s_offsets[i];
		const Dir vi(*(Real*)(((uint8_t*)&vertexData[0]) + offset), *(Real*)(((uint8_t*)&vertexData[1]) + offset), *(Real*)(((uint8_t*)&vertexData[2]) + offset));
		Dir n(Q0 | vi, Q1 | vi, Q2 | vi);
		if ((n | n) < 100 * EPS_REAL * EPS_REAL)
		{
			n.set((Real)0, (Real)0, (Real)0);
		}
		Real o = r | vi;
		if (physx::PxAbs(o) < 100 * EPS_REAL)
		{
			o = (Real)0;
		}
		m_frames[i].set(n, o);
	}
}

PX_INLINE void
Interpolator::setFlat(const Dir tangents[3], const Vec<Real, 2>& uvScale)
{
	// Local z ~ normal = tangents[2], x ~ u and tangent = tangents[0], y ~ v and binormal = tangents[1]
	m_frames[Normal_x].set(Dir((Real)0), tangents[2][0]);
	m_frames[Normal_y].set(Dir((Real)0), tangents[2][1]);
	m_frames[Normal_z].set(Dir((Real)0), tangents[2][2]);
	m_frames[Tangent_x].set(Dir((Real)0), tangents[0][0]);
	m_frames[Tangent_y].set(Dir((Real)0), tangents[0][1]);
	m_frames[Tangent_z].set(Dir((Real)0), tangents[0][2]);
	m_frames[Binormal_x].set(Dir((Real)0), tangents[1][0]);
	m_frames[Binormal_y].set(Dir((Real)0), tangents[1][1]);
	m_frames[Binormal_z].set(Dir((Real)0), tangents[1][2]);
	const Dir su = (uvScale[0] ? 1 / uvScale[0] : (Real)0) * tangents[0];
	const Dir sv = (uvScale[1] ? 1 / uvScale[1] : (Real)0) * tangents[1];
	m_frames[UV0_u].set(su, 0);
	m_frames[UV0_v].set(sv, 0);
	m_frames[UV1_u].set(su, 0);
	m_frames[UV1_v].set(sv, 0);
	m_frames[UV2_u].set(su, 0);
	m_frames[UV2_v].set(sv, 0);
	m_frames[UV3_u].set(su, 0);
	m_frames[UV3_v].set(sv, 0);
	m_frames[Color_r].set(Dir((Real)0), (Real)1);
	m_frames[Color_g].set(Dir((Real)0), (Real)1);
	m_frames[Color_b].set(Dir((Real)0), (Real)1);
	m_frames[Color_a].set(Dir((Real)0), (Real)1);
}

PX_INLINE void
Interpolator::interpolateVertexData(VertexData& vertexData, const Pos& point) const
{
	for (uint32_t i = 0; i < VertexFieldCount; ++i)
	{
		Real& value = *(Real*)(((uint8_t*)&vertexData) + s_offsets[i]);
		value = m_frames[i].distance(point);
	}
}

PX_INLINE bool
framesEqual(const Plane& f0, const Plane& f1, Real twoFrameScaleTol2, Real sinFrameTol2, Real tol2)
{
	const Dir n0 = f0.normal();
	const Dir n1 = f1.normal();
	const Real n02 = n0 | n0;
	const Real n12 = n1 | n1;
	const Real n2Diff = n02 - n12;

	if (n2Diff * n2Diff > twoFrameScaleTol2 * (n02 + n12))
	{
		return false;	// Scales differ by more than frame scale tolerance
	}

	const Real n2Prod = n02 * n12;
	const Real unnormalizedSinFrameTheta2 = (n0 ^ n1).lengthSquared();
	if (unnormalizedSinFrameTheta2 > n2Prod * sinFrameTol2)
	{
		return false;	// Directions differ by more than frame angle tolerance
	}

	const Real unnormalizedOriginDiff = f0.d() - f1.d();
	const Real originScale = 0.5f * (physx::PxAbs(f0.d()) + physx::PxAbs(f1.d()));
	if (unnormalizedOriginDiff * unnormalizedOriginDiff > tol2 * originScale * originScale)
	{
		return false;	// Origins differ by more than tolerance
	}

	return true;
}

PX_INLINE bool
Interpolator::equals(const Interpolator& interpolator, Real frameDirTol, Real frameScaleTol, Real dirTol, Real uvTol, Real colorTol) const
{
	const Real twoFrameScaleTol2 = (Real)2 * frameScaleTol * frameScaleTol;
	const Real sinFrameTol2 = frameDirTol * frameDirTol;
	const Real dirTol2 = dirTol * dirTol;
	const Real uvTol2 = uvTol * uvTol;
	const Real colorTol2 = colorTol * colorTol;

	// Directions
	for (uint32_t i = Normal_x; i <= Binormal_z; ++i)
	{
		if (!framesEqual(m_frames[i], interpolator.m_frames[i], twoFrameScaleTol2, sinFrameTol2, dirTol2))
		{
			return false;
		}
	}

	// UVs
	for (uint32_t i = UV0_u; i <= UV3_v; ++i)
	{
		if (!framesEqual(m_frames[i], interpolator.m_frames[i], twoFrameScaleTol2, sinFrameTol2, uvTol2))
		{
			return false;
		}
	}

	// Color
	for (uint32_t i = Color_r; i <= Color_a; ++i)
	{
		if (!framesEqual(m_frames[i], interpolator.m_frames[i], twoFrameScaleTol2, sinFrameTol2, colorTol2))
		{
			return false;
		}
	}

	return true;
}

PX_INLINE void
Interpolator::transform(Interpolator& transformedInterpolator, const Mat4Real& tm, const Mat4Real& invTransposeTM) const
{
	// Apply left-hand transform.
	for (uint32_t i = 0; i < VertexFieldCount; ++i)
	{
		transformedInterpolator.m_frames[i] = invTransposeTM * m_frames[i];
	}
	// Apply right-hand transform.  This is specific to the quantities being transformed.
	for (int i = 0; i < 4; ++i)
	{
		// Normal, transform by invTransposeTM:
		Dir normal_frame_i(transformedInterpolator.m_frames[Interpolator::Normal_x][i], transformedInterpolator.m_frames[Interpolator::Normal_y][i], transformedInterpolator.m_frames[Interpolator::Normal_z][i]);
		normal_frame_i = invTransposeTM * normal_frame_i;
		transformedInterpolator.m_frames[Interpolator::Normal_x][i] = normal_frame_i[0];
		transformedInterpolator.m_frames[Interpolator::Normal_y][i] = normal_frame_i[1];
		transformedInterpolator.m_frames[Interpolator::Normal_z][i] = normal_frame_i[2];
		// Tangent, transform by tm:
		Dir tangent_frame_i(transformedInterpolator.m_frames[Interpolator::Tangent_x][i], transformedInterpolator.m_frames[Interpolator::Tangent_y][i], transformedInterpolator.m_frames[Interpolator::Tangent_z][i]);
		tangent_frame_i = tm * tangent_frame_i;
		transformedInterpolator.m_frames[Interpolator::Tangent_x][i] = tangent_frame_i[0];
		transformedInterpolator.m_frames[Interpolator::Tangent_y][i] = tangent_frame_i[1];
		transformedInterpolator.m_frames[Interpolator::Tangent_z][i] = tangent_frame_i[2];
		// Binormal, transform by tm:
		Dir binormal_frame_i(transformedInterpolator.m_frames[Interpolator::Binormal_x][i], transformedInterpolator.m_frames[Interpolator::Binormal_y][i], transformedInterpolator.m_frames[Interpolator::Binormal_z][i]);
		binormal_frame_i = tm * binormal_frame_i;
		transformedInterpolator.m_frames[Interpolator::Binormal_x][i] = binormal_frame_i[0];
		transformedInterpolator.m_frames[Interpolator::Binormal_y][i] = binormal_frame_i[1];
		transformedInterpolator.m_frames[Interpolator::Binormal_z][i] = binormal_frame_i[2];
		// Other quantities are scalars
	}
}


class InterpolatorBuilder
{
public:
	InterpolatorBuilder()
	{
#define CREATE_OFFSET( field )	(size_t)((uintptr_t)&vertexData.field-(uintptr_t)&vertexData)

		VertexData vertexData;
		Interpolator::s_offsets[Interpolator::Normal_x] =	CREATE_OFFSET(normal[0]);
		Interpolator::s_offsets[Interpolator::Normal_y] =	CREATE_OFFSET(normal[1]);
		Interpolator::s_offsets[Interpolator::Normal_z] =	CREATE_OFFSET(normal[2]);
		Interpolator::s_offsets[Interpolator::Tangent_x] =	CREATE_OFFSET(tangent[0]);
		Interpolator::s_offsets[Interpolator::Tangent_y] =	CREATE_OFFSET(tangent[1]);
		Interpolator::s_offsets[Interpolator::Tangent_z] =	CREATE_OFFSET(tangent[2]);
		Interpolator::s_offsets[Interpolator::Binormal_x] =	CREATE_OFFSET(binormal[0]);
		Interpolator::s_offsets[Interpolator::Binormal_y] =	CREATE_OFFSET(binormal[1]);
		Interpolator::s_offsets[Interpolator::Binormal_z] =	CREATE_OFFSET(binormal[2]);
		Interpolator::s_offsets[Interpolator::UV0_u] =		CREATE_OFFSET(uv[0].u());
		Interpolator::s_offsets[Interpolator::UV0_v] =		CREATE_OFFSET(uv[0].v());
		Interpolator::s_offsets[Interpolator::UV1_u] =		CREATE_OFFSET(uv[1].u());
		Interpolator::s_offsets[Interpolator::UV1_v] =		CREATE_OFFSET(uv[1].v());
		Interpolator::s_offsets[Interpolator::UV2_u] =		CREATE_OFFSET(uv[2].u());
		Interpolator::s_offsets[Interpolator::UV2_v] =		CREATE_OFFSET(uv[2].v());
		Interpolator::s_offsets[Interpolator::UV3_u] =		CREATE_OFFSET(uv[3].u());
		Interpolator::s_offsets[Interpolator::UV3_v] =		CREATE_OFFSET(uv[3].v());
		Interpolator::s_offsets[Interpolator::Color_r] =	CREATE_OFFSET(color.r());
		Interpolator::s_offsets[Interpolator::Color_g] =	CREATE_OFFSET(color.g());
		Interpolator::s_offsets[Interpolator::Color_b] =	CREATE_OFFSET(color.b());
		Interpolator::s_offsets[Interpolator::Color_a] =	CREATE_OFFSET(color.a());
	}
};


// ClippedTriangleInfo - used to map bsp output back to the original mesh
struct ClippedTriangleInfo
{
	uint32_t	planeIndex;
	uint32_t	originalTriangleIndex;
	uint32_t	clippedTriangleIndex;
	uint32_t	ccw;

	static	int	cmp(const void* a, const void* b)
	{
		const int planeIndexDiff = (int)((ClippedTriangleInfo*)a)->planeIndex - (int)((ClippedTriangleInfo*)b)->planeIndex;
		if (planeIndexDiff != 0)
		{
			return planeIndexDiff;
		}
		const int originalTriangleDiff = (int)((ClippedTriangleInfo*)a)->originalTriangleIndex - (int)((ClippedTriangleInfo*)b)->originalTriangleIndex;
		if (originalTriangleDiff != 0)
		{
			return originalTriangleDiff;
		}
		return (int)((ClippedTriangleInfo*)a)->clippedTriangleIndex - (int)((ClippedTriangleInfo*)b)->clippedTriangleIndex;
	}
};

// BSPLink - a link with an "isBSP" method to act as a stop
class BSPLink : public nvidia::Link, public nvidia::UserAllocated
{
public:
	virtual bool	isBSP()
	{
		return false;
	}

	BSPLink*		getAdjBSP(uint32_t which) const
	{
		if (isSolitary())
		{
			return NULL;
		}
		BSPLink* adjLink = static_cast<BSPLink*>(getAdj(which));
		return adjLink->isBSP() ? adjLink : NULL;
	}

	void			removeBSPLink()
	{
		BSPLink* adjLink = static_cast<BSPLink*>(getAdj(1));
		remove();
		if (!adjLink->isBSP() && adjLink->isSolitary())
		{
			delete adjLink;
		}
	}
};

// Specialized progress listener implementation
class QuantityProgressListener : public nvidia::IProgressListener
{
public:
	QuantityProgressListener(Real totalAmount, IProgressListener* parent) : 
		m_total((Real)0)
	,	m_parent(parent)
	{
		m_scale = totalAmount > (Real)0 ? (Real)100/(Real)totalAmount : (Real)0;
	}

	// IProgressListener interface
	virtual void	setProgress(int progress, const char* taskName = NULL)
	{
		if (m_parent != NULL)
		{
			m_parent->setProgress(progress, taskName);
		}
	}

	virtual void	add(Real amount)
	{
		m_total += amount;
		if (m_parent != NULL)
		{
			m_parent->setProgress((int)(m_total*m_scale + (Real)0.5));
		}
	}

private:
	Real				m_total;
	Real				m_scale;
	IProgressListener*	m_parent;
};


// IApexBSP implementation
class BSP : public IApexBSP, public BSPLink
{
public:
	BSP(IApexBSPMemCache* memCache = NULL, const physx::PxMat44& internalTransform = physx::PxMat44(physx::PxIdentity));
	~BSP();

	// IApexBSP implementation
	void			setTolerances(const BSPTolerances& tolerances);
	bool			fromMesh(const nvidia::ExplicitRenderTriangle* mesh, uint32_t meshSize, const BSPBuildParameters& params, nvidia::IProgressListener* progressListener = NULL, volatile bool* cancel = NULL);
	bool			fromConvexPolyhedron(const physx::PxPlane* poly, uint32_t polySize, const physx::PxMat44& internalTransform = physx::PxMat44(physx::PxIdentity), const nvidia::ExplicitRenderTriangle* mesh = NULL, uint32_t meshSize = 0);
	bool			combine(const IApexBSP& bsp);
	bool			op(const IApexBSP& combinedBSP, Operation::Enum operation);
	bool			complement();
	BSPType::Enum	getType() const;
	bool			getSurfaceAreaAndVolume(float& area, float& volume, bool inside, Operation::Enum operation = Operation::NOP) const;
	bool			pointInside(const physx::PxVec3& point, Operation::Enum operation = Operation::NOP) const;
	bool			toMesh(physx::Array<nvidia::ExplicitRenderTriangle>& mesh) const;
	void			copy(const IApexBSP& bsp, const physx::PxMat44& tm = physx::PxMat44(physx::PxIdentity), const physx::PxMat44& internalTransform = physx::PxMat44(physx::PxZero));
	physx::PxMat44	getInternalTransform() const
	{
		return m_internalTransform;
	}

	void			replaceInteriorSubmeshes(uint32_t frameCount, uint32_t* frameIndices, uint32_t submeshIndex);

	IApexBSP*		decomposeIntoIslands() const;
	IApexBSP*		getNext() const
	{
		return static_cast<BSP*>(getAdjBSP(1));
	}
	IApexBSP*		getPrev() const
	{
		return static_cast<BSP*>(getAdjBSP(0));
	}

	void			deleteTriangles();

	void			serialize(physx::PxFileBuf& stream) const;
	void			deserialize(physx::PxFileBuf& stream);
	void			visualize(nvidia::RenderDebugInterface& debugRender, uint32_t flags, uint32_t index = 0) const;
	void			release();

	// Debug
	void			performDiagnostics() const;

	// BSPLink
	bool			isBSP()
	{
		return true;
	}

	// Node, a binary node with geometric data
	class Node : public BinaryNode
	{
		Node& operator = (const Node&); // No assignment

	public:
		enum Type { Leaf, Branch };

		Node() : m_type(Leaf)
		{
			m_leafData.side = 1;
		}

		PX_INLINE	void		setLeafData(const Region& leafData)
		{
			m_type = Leaf;
			m_leafData = leafData;
		}
		PX_INLINE	void		setBranchData(const Surface& branchData)
		{
			m_type = Branch;
			m_branchData = branchData;
		}

		PX_INLINE	Type		getType()						const
		{
			return (Type)m_type;
		}

		PX_INLINE	Region*			getLeafData()
		{
			PX_ASSERT(getType() == Leaf);
			return &m_leafData;
		}
		PX_INLINE	Surface*		getBranchData()
		{
			PX_ASSERT(getType() == Branch);
			return &m_branchData;
		}
		PX_INLINE	const Region*	getLeafData()				const
		{
			PX_ASSERT(getType() == Leaf);
			return &m_leafData;
		}
		PX_INLINE	const Surface*	getBranchData()				const
		{
			PX_ASSERT(getType() == Branch);
			return &m_branchData;
		}

		PX_INLINE	Node*		getParent()						const
		{
			return (Node*)BinaryNode::getParent();
		}
		PX_INLINE	Node*		getChild(uint32_t index)	const
		{
			return (Node*)BinaryNode::getChild(index);
		}

		// Iterator (uses a stack, but no recursion)
		// Can handle branches with NULL children
		class It
		{
		public:
			PX_INLINE			It(const Node* root) : m_current(const_cast<Node*>(root)), m_valid(true) {}
			PX_INLINE			It(Node* root) : m_current(root), m_valid(true) {}

			PX_INLINE	bool	valid()	const
			{
				return m_valid;
			}

			PX_INLINE	Node*	node()	const
			{
				return m_current;
			}

			PX_INLINE	void	inc()
			{
				if (m_current != NULL && m_current->getType() == Branch)
				{
					m_stack.pushBack(m_current->getChild(1));
					m_current = m_current->getChild(0);
				}
				else
				if (!m_stack.empty())
				{
					m_current  = m_stack.popBack();
				}
				else
				{
					m_current = NULL;
					m_valid = false;
				}
			}

		private:
			Node*				m_current;
			physx::Array<Node*>	m_stack;
			bool				m_valid;
		};

	protected:
		uint32_t	m_type;

		union
		{
			Region		m_leafData;
			Surface		m_branchData;
		};
	};

	class Halfspace : public GSA::VS3D_Halfspace_Set
	{
	public:
							Halfspace(const Plane plane) : m_plane(plane) {}

			virtual	GSA::real	farthest_halfspace(GSA::real plane[4], const GSA::real point[4])
			{
				for (int i = 0; i < 4; ++i) plane[i] = (GSA::real)m_plane[i];
				return plane[0]*point[0] + plane[1]*point[1] + plane[2]*point[2] + plane[3]*point[3];
			}

			Halfspace&	operator = (const Halfspace& halfspace) { m_plane = halfspace.m_plane; return *this; }

	private:
		Plane	m_plane;
	};

	class RegionShape : public GSA::VS3D_Halfspace_Set
	{
	public:
		RegionShape(const Plane* planes, Real skinWidth = (Real)0) : m_planes(planes), m_leaf(NULL), m_nonempty(true), m_skinWidth(skinWidth) {}

		virtual	GSA::real	farthest_halfspace(GSA::real plane[4], const GSA::real point[4]);

		void		set_leaf(const BSP::Node* leaf)
		{
			m_leaf = leaf;
		}

		void		calculate()
		{
			m_nonempty = (1 == GSA::vs3d_test(*this));
		}

		bool		is_nonempty() const
		{
			return m_nonempty;
		}

#if 0
		bool		intersects_halfspace(const Plane* plane)
		{
			Halfspace halfspace(plane);
			set_shapes(this, &halfspace);
			return intersect();
		}
#endif

	private:
		const Plane*		m_planes;
		const BSP::Node*	m_leaf;
		bool				m_nonempty;
		Real				m_skinWidth;
	};

private:
	class BoolOp
	{
	public:
		BoolOp(Operation::Enum op) : c_ba(((uint32_t)op >> 3) & 1), c_b(((uint32_t)op >> 2) & 1), c_a(((uint32_t)op >> 1) & 1), c_k((uint32_t)op & 1)	{}

		uint32_t	operator()(uint32_t a, uint32_t b) const
		{
			return (c_ba & a & b) ^(c_b & b) ^(c_a & a) ^ c_k;
		}

	private:
		uint32_t	c_ba, c_b, c_a, c_k;
	};

	struct BuildConstants
	{
		BSPBuildParameters	m_params;
		float		m_recipMaxArea;
	};

	void		clear();

	void		transform(const Mat4Real& tm, bool transformFrames = true);

	// Returns the area and volume of the clipped mesh.  clippedMesh and triangleInfo may be NULL, in which case nothing is done but
	// the area and volume calculation.
	void		clipMeshToLeaf(Real& area, Real& volume, physx::Array<Triangle>* clippedMesh, physx::Array<ClippedTriangleInfo>* triangleInfo, const Node* leaf, float clipTolerance) const;

	// Called by buildTree - forcing no inline to ensure a small stack frame

							// Returns a new stackReadStop
	PX_INLINE uint32_t	removeRedundantSurfacesFromStack(physx::Array<Surface>& surfaceStack, uint32_t stackReadStart, uint32_t stackReadStop, Node* leaf);
	PX_INLINE void		assignLeafSide(Node* leaf, QuantityProgressListener* quantityListener);
	PX_INLINE void		createBranchSurfaceAndSplitStack(uint32_t childReadStart[2], uint32_t childReadStop[2], Node* node, physx::Array<Surface>& surfaceStack,
														 uint32_t stackReadStart, uint32_t stackReadStop, const BuildConstants& buildConstants);

	// Recursive functions
	void		complementLeaves(Node* root) const;
	void		mergeLeaves(const BoolOp& op, Node* root);
	void		clipMeshToLeaves(physx::Array<Triangle>& clippedMesh, physx::Array<ClippedTriangleInfo>& triangleInfo, Node* root, float clipTolerance) const;
	void		clone(Node* root, const Node* originalRoot);
	void		combineTrees(Node* root, const Node* combineRoot, uint32_t triangleIndexOffset, uint32_t planeIndexOffset);
	bool		buildTree(Node* root, physx::Array<Surface>& surfaceStack, uint32_t stackReadStart, uint32_t stackReadStop,
	                      const BuildConstants& buildConstants, QuantityProgressListener* quantityListener, volatile bool* cancel = NULL);
	void		visualizeNode(nvidia::RenderDebugInterface& debugRender, uint32_t flags, const Node* root) const;
	bool		addLeafAreasAndVolumes(Real& totalArea, Real& totalVolume, const Node* root, bool inside, const BoolOp& op) const;
	void		serializeNode(const Node* root, physx::PxFileBuf& stream) const;
	Node*		deserializeNode(uint32_t version, physx::PxFileBuf& stream);
	void		releaseNode(Node* node);
	void		indexInsideLeaves(uint32_t& index, Node* root) const;
	void		listInsideLeaves(physx::Array<Node*>& insideLeaves, Node* root) const;
	void		findInsideLeafNeighbors(physx::Array<nvidia::IntPair>& neighbors, Node* root) const;

	void		clean();

	// Parameters
	BSPTolerances				m_tolerarnces;

	// Tree
	Node*						m_root;

	// Internal mesh representation
	physx::Array<Triangle>		m_mesh;
	physx::Array<Interpolator>	m_frames;
	Real						m_meshSize;
	physx::PxBounds3			m_meshBounds;
	physx::PxMat44				m_internalTransform;
	Mat4Real					m_internalTransformInverse;
	bool						m_incidentalMesh;


	// Unique splitting planes
	physx::Array<Plane>			m_planes;

	// Combination data
	bool						m_combined;
	Real						m_combiningMeshSize;
	bool						m_combiningIncidentalMesh;

	// Memory cache
	class BSPMemCache*			m_memCache;
	bool						m_ownsMemCache;
};


// Surface iterator; walks from a leaf's parent to the root of a tree, allowing inspection of surfaces along the way
class SurfaceIt
{
public:
	PX_INLINE					SurfaceIt() : m_current(NULL), m_side(0xFFFFFFFF)				{}
	PX_INLINE					SurfaceIt(const BSP::Node* leaf) : m_current((BSP::Node*)leaf)
	{
		PX_ASSERT(leaf != NULL && leaf->getType() == BSP::Node::Leaf);
		inc();
	}

	PX_INLINE	bool			valid()	const
	{
		return m_current != NULL;
	}

	PX_INLINE	void			inc()
	{
		m_side = m_current->getIndex();
		m_current = m_current->getParent();
	}

	PX_INLINE	const Surface*	surface()	const
	{
		return m_current->getBranchData();
	}

	PX_INLINE	uint32_t	side()		const
	{
		return m_side;
	}

private:
	BSP::Node*			m_current;
	uint32_t		m_side;
};


// IBSPMemCache implementation, several pools and growable arrays.  Not global, so that concurrent calculations can use different pools
class BSPMemCache : public IApexBSPMemCache, public nvidia::UserAllocated
{
public:

	BSPMemCache();

	void	clearAll();
	void	clearTemp();

	void	release();

	// Persistent data
	nvidia::Pool<BSP::Node>		m_nodePool;

	// Temporary data
	nvidia::Pool<LinkedVertex>	m_linkedVertexPool;
	physx::Array<uint8_t>	m_surfaceFlags;
	physx::Array<uint8_t>	m_surfaceTestFlags;
};


// Mesh cleaning interface
void
cleanMesh(physx::Array<nvidia::ExplicitRenderTriangle>& cleanedMesh, const physx::Array<Triangle>& mesh, physx::Array<ClippedTriangleInfo>& triangleInfo, const physx::Array<Plane>& planes, const physx::Array<Triangle>& originalTriangles, const physx::Array<Interpolator>& frames, Real distanceTol, const Mat4Real& BSPToMeshTM);

};	// namespace ApexCSG

#endif

#endif // #define APEX_CSG_DEFS_H

Commits for Divide-Dependencies/physx/APEX_1.4/shared/internal/include/authoring/ApexCSGDefs.h

Diff revisions: vs.
Revision Author Commited Message
105 IonutCava picture IonutCava Tue 16 Apr, 2019 19:55:41 +0000

Forgot to actually add physx