Subversion Repository Public Repository

Divide-Dependencies

This repository has no backups
This repository's network speed is throttled to 100KB/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of NVIDIA CORPORATION nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2018 NVIDIA Corporation. All rights reserved.


// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.

#include "SwSelfCollision.h"
#include "SwCloth.h"
#include "SwClothData.h"
#include "PsIntrinsics.h"
#include "SwCollision.h" //temp fix, needed by SwCollisionHelper implementaitons
#include "Simd4f.h"
#include "SwCollisionHelpers.h"

#pragma warning(disable:4127)

using namespace nvidia;
using namespace cloth;

namespace
{
typedef Simd4fFactory<detail::FourTuple> Simd4fConstant;

const Simd4fConstant sMaskXYZ = simd4f(simd4i(~0, ~0, ~0, 0));
const Simd4fConstant sEpsilon = simd4f(FLT_EPSILON);

// returns sorted indices, output needs to be at least 2*(last-first)+1024
void radixSort(const uint32_t* first, const uint32_t* last, uint16_t* out)
{
	uint16_t n = uint16_t(last - first);

	uint16_t* buffer = out + 2 * n;
	uint16_t* __restrict histograms[] = { buffer, buffer + 256, buffer + 512, buffer + 768 };

	intrinsics::memZero(buffer, 1024 * sizeof(uint16_t));

	// build 3 histograms in one pass
	for(const uint32_t* __restrict it = first; it != last; ++it)
	{
		uint32_t key = *it;
		++histograms[0][0xff & key];
		++histograms[1][0xff & (key >> 8)];
		++histograms[2][0xff & (key >> 16)];
		++histograms[3][key >> 24];
	}

	// convert histograms to offset tables in-place
	uint16_t sums[4] = {};
	for(uint32_t i = 0; i < 256; ++i)
	{
		uint16_t temp0 = uint16_t(histograms[0][i] + sums[0]);
		histograms[0][i] = sums[0], sums[0] = temp0;

		uint16_t temp1 = uint16_t(histograms[1][i] + sums[1]);
		histograms[1][i] = sums[1], sums[1] = temp1;

		uint16_t temp2 = uint16_t(histograms[2][i] + sums[2]);
		histograms[2][i] = sums[2], sums[2] = temp2;

		uint16_t temp3 = uint16_t(histograms[3][i] + sums[3]);
		histograms[3][i] = sums[3], sums[3] = temp3;
	}

	PX_ASSERT(sums[0] == n && sums[1] == n && sums[2] == n && sums[3] == n);

#if PX_DEBUG
	memset(out, 0xff, 2 * n * sizeof(uint16_t));
#endif

	// sort 8 bits per pass

	uint16_t* __restrict indices[] = { out, out + n };

	for(uint16_t i = 0; i != n; ++i)
		indices[1][histograms[0][0xff & first[i]]++] = i;

	for(uint16_t i = 0, index; index = indices[1][i], i != n; ++i)
		indices[0][histograms[1][0xff & (first[index] >> 8)]++] = index;

	for(uint16_t i = 0, index; index = indices[0][i], i != n; ++i)
		indices[1][histograms[2][0xff & (first[index] >> 16)]++] = index;

	for(uint16_t i = 0, index; index = indices[1][i], i != n; ++i)
		indices[0][histograms[3][first[index] >> 24]++] = index;
}

template <typename Simd4f>
uint32_t longestAxis(const Simd4f& edgeLength)
{
	const float* e = array(edgeLength);

	if(e[0] > e[1])
		return uint32_t(e[0] > e[2] ? 0 : 2);
	else
		return uint32_t(e[1] > e[2] ? 1 : 2);
}

bool isSelfCollisionEnabled(const cloth::SwClothData& cloth)
{
	return PxMin(cloth.mSelfCollisionDistance, cloth.mSelfCollisionStiffness) > 0.0f;
}

bool isSelfCollisionEnabled(const cloth::SwCloth& cloth)
{
	return PxMin(cloth.mSelfCollisionDistance, -cloth.mSelfCollisionLogStiffness) > 0.0f;
}

inline uint32_t align2(uint32_t x)
{
	return (x + 1) & ~1;
}

} // anonymous namespace

template <typename Simd4f>
cloth::SwSelfCollision<Simd4f>::SwSelfCollision(cloth::SwClothData& clothData, cloth::SwKernelAllocator& alloc)
: mClothData(clothData), mAllocator(alloc)
{
	mCollisionDistance = simd4f(mClothData.mSelfCollisionDistance);
	mCollisionSquareDistance = mCollisionDistance * mCollisionDistance;
	mStiffness = (Simd4f)sMaskXYZ & simd4f(mClothData.mSelfCollisionStiffness);
}

template <typename Simd4f>
cloth::SwSelfCollision<Simd4f>::~SwSelfCollision()
{
}

template <typename Simd4f>
void cloth::SwSelfCollision<Simd4f>::operator()()
{
	mNumTests = mNumCollisions = 0;

	if(!isSelfCollisionEnabled(mClothData))
		return;

	Simd4f lowerBound = load(mClothData.mCurBounds);
	Simd4f edgeLength = max(load(mClothData.mCurBounds + 3) - lowerBound, sEpsilon);

	// sweep along longest axis
	uint32_t sweepAxis = longestAxis(edgeLength);
	uint32_t hashAxis0 = (sweepAxis + 1) % 3;
	uint32_t hashAxis1 = (sweepAxis + 2) % 3;

	// reserve 0, 127, and 65535 for sentinel
	Simd4f cellSize = max(mCollisionDistance, simd4f(1.0f / 253) * edgeLength);
	array(cellSize)[sweepAxis] = array(edgeLength)[sweepAxis] / 65533;

	Simd4f one = simd4f(_1);
	Simd4f gridSize = simd4f(254.0f);
	array(gridSize)[sweepAxis] = 65534.0f;

	Simd4f gridScale = recipT<1>(cellSize);
	Simd4f gridBias = -lowerBound * gridScale + simd4f(_1);

	uint32_t numIndices = mClothData.mNumSelfCollisionIndices;
	void* buffer = mAllocator.allocate(getBufferSize(numIndices));

	const uint32_t* __restrict indices = mClothData.mSelfCollisionIndices;
	uint32_t* __restrict keys = reinterpret_cast<uint32_t*>(buffer);
	uint16_t* __restrict sortedIndices = reinterpret_cast<uint16_t*>(keys + numIndices);
	uint32_t* __restrict sortedKeys = reinterpret_cast<uint32_t*>(sortedIndices + align2(numIndices));

	const Simd4f* particles = reinterpret_cast<const Simd4f*>(mClothData.mCurParticles);

	// create keys
	for(uint32_t i = 0; i < numIndices; ++i)
	{
		uint32_t index = indices ? indices[i] : i;

		// grid coordinate
		Simd4f keyf = particles[index] * gridScale + gridBias;

		// need to clamp index because shape collision potentially
		// pushes particles outside of their original bounds
		Simd4i keyi = intFloor(max(one, min(keyf, gridSize)));

		const int32_t* ptr = simdi::array(keyi);
		keys[i] = uint32_t(ptr[sweepAxis] | (ptr[hashAxis0] << 16) | (ptr[hashAxis1] << 24));
	}

	// compute sorted keys indices
	radixSort(keys, keys + numIndices, sortedIndices);

	// snoop histogram: offset of first index with 8 msb > 1 (0 is sentinel)
	uint16_t firstColumnSize = sortedIndices[2 * numIndices + 769];

	// sort keys
	for(uint32_t i = 0; i < numIndices; ++i)
		sortedKeys[i] = keys[sortedIndices[i]];
	sortedKeys[numIndices] = uint32_t(-1); // sentinel

	if(indices)
	{
		// sort indices (into no-longer-needed keys array)
		const uint16_t* __restrict permutation = sortedIndices;
		sortedIndices = reinterpret_cast<uint16_t*>(keys);
		for(uint32_t i = 0; i < numIndices; ++i)
			sortedIndices[i] = uint16_t(indices[permutation[i]]);
	}

	// calculate the number of buckets we need to search forward
	const Simd4i data = intFloor(gridScale * mCollisionDistance);
	uint32_t collisionDistance = 2 + (uint32_t)simdi::array(data)[sweepAxis];

	// collide particles
	if(mClothData.mRestPositions)
		collideParticles<true>(sortedKeys, firstColumnSize, sortedIndices, collisionDistance);
	else
		collideParticles<false>(sortedKeys, firstColumnSize, sortedIndices, collisionDistance);

	mAllocator.deallocate(buffer);

	// verify against brute force (disable collision response when testing)
	/*
	uint32_t numCollisions = mNumCollisions;
	mNumCollisions = 0;

	Simd4f* qarticles = reinterpret_cast<
	    Simd4f*>(mClothData.mCurParticles);
	for(uint32_t i = 0; i < numIndices; ++i)
	{
	    uint32_t indexI = indices ? indices[i] : i;
	    for(uint32_t j = i+1; j < numIndices; ++j)
	    {
	        uint32_t indexJ = indices ? indices[j] : j;
	        collideParticles(qarticles[indexI], qarticles[indexJ]);
	    }
	}

	static uint32_t iter = 0; ++iter;
	if(numCollisions != mNumCollisions)
	    printf("%u: %u != %u\n", iter, numCollisions, mNumCollisions);
	*/
}

template <typename Simd4f>
size_t cloth::SwSelfCollision<Simd4f>::estimateTemporaryMemory(const SwCloth& cloth)
{
	uint32_t numIndices =
	    cloth.mSelfCollisionIndices.empty() ? cloth.mCurParticles.size() : cloth.mSelfCollisionIndices.size();
	return isSelfCollisionEnabled(cloth) ? getBufferSize(numIndices) : 0;
}

template <typename Simd4f>
size_t cloth::SwSelfCollision<Simd4f>::getBufferSize(uint32_t numIndices)
{
	uint32_t keysSize = numIndices * sizeof(uint32_t);
	uint32_t indicesSize = align2(numIndices) * sizeof(uint16_t);
	uint32_t radixSize = (numIndices + 1024) * sizeof(uint16_t);
	return keysSize + indicesSize + PxMax(radixSize, keysSize + uint32_t(sizeof(uint32_t)));
}

template <typename Simd4f>
template <bool useRestParticles>
void cloth::SwSelfCollision<Simd4f>::collideParticles(Simd4f& pos0, Simd4f& pos1, const Simd4f& pos0rest,
                                                      const Simd4f& pos1rest)
{
	Simd4f diff = pos1 - pos0;
	Simd4f distSqr = dot3(diff, diff);

#if PX_DEBUG
	++mNumTests;
#endif

	if(allGreater(distSqr, mCollisionSquareDistance))
		return;

	if(useRestParticles)
	{
		// calculate distance in rest configuration, if less than collision
		// distance then ignore collision between particles in deformed config
		Simd4f restDiff = pos1rest - pos0rest;
		Simd4f restDistSqr = dot3(restDiff, restDiff);

		if(allGreater(mCollisionSquareDistance, restDistSqr))
			return;
	}

	Simd4f w0 = splat<3>(pos0);
	Simd4f w1 = splat<3>(pos1);

	Simd4f ratio = mCollisionDistance * rsqrt(distSqr);
	Simd4f scale = mStiffness * recip(sEpsilon + w0 + w1);
	Simd4f delta = (scale * (diff - diff * ratio)) & sMaskXYZ;

	pos0 = pos0 + delta * w0;
	pos1 = pos1 - delta * w1;

#if PX_DEBUG || PX_PROFILE
	++mNumCollisions;
#endif
}

template <typename Simd4f>
template <bool useRestParticles>
void cloth::SwSelfCollision<Simd4f>::collideParticles(const uint32_t* keys, uint16_t firstColumnSize,
                                                      const uint16_t* indices, uint32_t collisionDistance)
{
	Simd4f* __restrict particles = reinterpret_cast<Simd4f*>(mClothData.mCurParticles);
	Simd4f* __restrict restParticles =
	    useRestParticles ? reinterpret_cast<Simd4f*>(mClothData.mRestPositions) : particles;

	const uint32_t bucketMask = uint16_t(-1);

	const uint32_t keyOffsets[] = { 0, 0x00010000, 0x00ff0000, 0x01000000, 0x01010000 };

	const uint32_t* __restrict kFirst[5];
	const uint32_t* __restrict kLast[5];

	{
		// optimization: scan forward iterator starting points once instead of 9 times
		const uint32_t* __restrict kIt = keys;

		uint32_t key = *kIt;
		uint32_t firstKey = key - PxMin(collisionDistance, key & bucketMask);
		uint32_t lastKey = PxMin(key + collisionDistance, key | bucketMask);

		kFirst[0] = kIt;
		while(*kIt < lastKey)
			++kIt;
		kLast[0] = kIt;

		for(uint32_t k = 1; k < 5; ++k)
		{
			for(uint32_t n = firstKey + keyOffsets[k]; *kIt < n;)
				++kIt;
			kFirst[k] = kIt;

			for(uint32_t n = lastKey + keyOffsets[k]; *kIt < n;)
				++kIt;
			kLast[k] = kIt;

			// jump forward once to second column
			kIt = keys + firstColumnSize;
			firstColumnSize = 0;
		}
	}

	const uint16_t* __restrict iIt = indices;
	const uint16_t* __restrict iEnd = indices + mClothData.mNumSelfCollisionIndices;

	const uint16_t* __restrict jIt;
	const uint16_t* __restrict jEnd;

	for(; iIt != iEnd; ++iIt, ++kFirst[0])
	{
		PX_ASSERT(*iIt < mClothData.mNumParticles);

		// load current particle once outside of inner loop
		Simd4f particle = particles[*iIt];
		Simd4f restParticle = restParticles[*iIt];

		uint32_t key = *kFirst[0];

		// range of keys we need to check against for this particle
		uint32_t firstKey = key - PxMin(collisionDistance, key & bucketMask);
		uint32_t lastKey = PxMin(key + collisionDistance, key | bucketMask);

		// scan forward end point
		while(*kLast[0] < lastKey)
			++kLast[0];

		// process potential colliders of same cell
		jEnd = indices + (kLast[0] - keys);
		for(jIt = iIt + 1; jIt != jEnd; ++jIt)
			collideParticles<useRestParticles>(particle, particles[*jIt], restParticle, restParticles[*jIt]);

		// process neighbor cells
		for(uint32_t k = 1; k < 5; ++k)
		{
			// scan forward start point
			for(uint32_t n = firstKey + keyOffsets[k]; *kFirst[k] < n;)
				++kFirst[k];

			// scan forward end point
			for(uint32_t n = lastKey + keyOffsets[k]; *kLast[k] < n;)
				++kLast[k];

			// process potential colliders
			jEnd = indices + (kLast[k] - keys);
			for(jIt = indices + (kFirst[k] - keys); jIt != jEnd; ++jIt)
				collideParticles<useRestParticles>(particle, particles[*jIt], restParticle, restParticles[*jIt]);
		}

		// store current particle
		particles[*iIt] = particle;
	}
}

// explicit template instantiation
#if NVMATH_SIMD
template class cloth::SwSelfCollision<Simd4f>;
#endif
#if NVMATH_SCALAR
template class cloth::SwSelfCollision<Scalar4f>;
#endif

Commits for Divide-Dependencies/physx/APEX_1.4/module/clothing/embedded/LowLevelCloth/src/SwSelfCollision.cpp

Diff revisions: vs.
Revision Author Commited Message
105 IonutCava picture IonutCava Tue 16 Apr, 2019 19:55:41 +0000

Forgot to actually add physx