Subversion Repository Public Repository

Divide-Framework

This repository has no backups
This repository's network speed is throttled to 100KB/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#include "Headers/GFXDevice.h"

#include "Core/Headers/Kernel.h"
#include "Core/Headers/Application.h"
#include "Core/Headers/ParamHandler.h"
#include "Core/Resources/Headers/ResourceCache.h"
#include "Platform/Video/Shaders/Headers/ShaderManager.h"
#include "Rendering/PostFX/Headers/PostFX.h"
#include "Rendering/Headers/ForwardPlusRenderer.h"
#include "Rendering/Headers/DeferredShadingRenderer.h"

namespace Divide {

/// Create a display context using the selected API and create all of the needed primitives needed for frame rendering
ErrorCode GFXDevice::initRenderingApi(const vec2<U16>& resolution, I32 argc, char **argv) {
    ErrorCode hardwareState = createAPIInstance();
    if (hardwareState == NO_ERR) {
        // Initialize the rendering API
        _api->initRenderingApi(resolution, argc, argv);
    } else {
        // Validate initialization
        return hardwareState;
    }
    // Initialize the shader manager
    ShaderManager::getOrCreateInstance().init();
    // Create an immediate mode shader used for general purpose rendering (e.g. to mimic the fixed function pipeline)
    _imShader = ShaderManager::getInstance().getDefaultShader();
    DIVIDE_ASSERT(_imShader != nullptr, "GFXDevice error: No immediate mode emulation shader available!");
    PostFX::createInstance();
    // Create a shader buffer to store the following info: 
    // ViewMatrix, ProjectionMatrix, ViewProjectionMatrix, CameraPositionVec, 
    // ViewportRec, zPlanesVec4 and ClipPlanes[MAX_CLIP_PLANES]
    // It should translate to (as seen by OpenGL) a uniform buffer without persistent mapping. 
    // (Many small updates with BufferSubData are recommended with the target usage of the buffer)
    _gfxDataBuffer = newSB(false, false);
    _gfxDataBuffer->Create(1, sizeof(GPUBlock)); 
    _gfxDataBuffer->Bind(SHADER_BUFFER_GPU_BLOCK);
    // Every visible node will first update this buffer with required data
    // (WorldMatrix, NormalMatrix, Material properties, Bone count, etc)
    // Due to it's potentially huge size, it translates to (as seen by OpenGL) a Shader Storage Buffer that's persistently 
    // and coherently mapped
    _nodeBuffer = newSB(true);
    _nodeBuffer->Create(Config::MAX_VISIBLE_NODES, sizeof(NodeData));
    _nodeBuffer->Bind(SHADER_BUFFER_NODE_INFO);
    // Resize our window to the target resolution (usually, the splash screen resolution)
    changeResolution(resolution.width, resolution.height);
    // Create general purpose render state blocks
    RenderStateBlockDescriptor defaultStateDescriptor;
    _defaultStateBlockHash = getOrCreateStateBlock(defaultStateDescriptor);
    RenderStateBlockDescriptor defaultStateDescriptorNoDepth;
    defaultStateDescriptorNoDepth.setZReadWrite(false, true);
    _defaultStateNoDepthHash = getOrCreateStateBlock(defaultStateDescriptorNoDepth);
    RenderStateBlockDescriptor state2DRenderingDesc;
    state2DRenderingDesc.setCullMode(CULL_MODE_NONE);
    state2DRenderingDesc.setZReadWrite(false, true);
    _state2DRenderingHash = getOrCreateStateBlock(state2DRenderingDesc);
    RenderStateBlockDescriptor stateDepthOnlyRendering;
    stateDepthOnlyRendering.setColorWrites(false, false, false, false);
    stateDepthOnlyRendering.setZFunc(CMP_FUNC_ALWAYS);
    _stateDepthOnlyRenderingHash = getOrCreateStateBlock(stateDepthOnlyRendering);
    // Block with hash 0 is null, and it's used to force a block update, bypassing state comparison with previous blocks
    _stateBlockMap[0] = nullptr;
    // The general purpose render state blocks are both mandatory and must differ from each other at a state hash level
    DIVIDE_ASSERT(_stateDepthOnlyRenderingHash != _state2DRenderingHash,    
                  "GFXDevice error: Invalid default state hash detected!");
    DIVIDE_ASSERT(_state2DRenderingHash        != _defaultStateNoDepthHash, 
                  "GFXDevice error: Invalid default state hash detected!");
    DIVIDE_ASSERT(_defaultStateNoDepthHash     != _defaultStateBlockHash, 
                  "GFXDevice error: Invalid default state hash detected!");
    // Activate the default render states
    setStateBlock(_defaultStateBlockHash);
    // Our default render targets hold the screen buffer, depth buffer, and a special, on demand, 
    // down-sampled version of the depth buffer
    // Screen FB should use MSAA if available
    _renderTarget[RENDER_TARGET_SCREEN]       = newFB(true);
    // The depth buffer should probably be merged into the screen buffer
    _renderTarget[RENDER_TARGET_DEPTH]        = newFB(false);
    // We need to create all of our attachments for the default render targets
    // Start with the screen render target: Try a half float, multisampled buffer (MSAA + HDR rendering if possible)
    TextureDescriptor screenDescriptor(TEXTURE_2D_MS, RGBA16F, FLOAT_16);
    SamplerDescriptor screenSampler;
    screenSampler.setFilters(TEXTURE_FILTER_NEAREST, TEXTURE_FILTER_NEAREST);
    screenSampler.setWrapMode(TEXTURE_CLAMP_TO_EDGE);
    screenSampler.toggleMipMaps(false);
    screenDescriptor.setSampler(screenSampler);
    // Next, create a depth attachment for the screen render target.
    // Must also multisampled. Use full float precision for long view distances
    SamplerDescriptor depthSampler;
    depthSampler.setFilters(TEXTURE_FILTER_NEAREST);
    depthSampler.setWrapMode(TEXTURE_CLAMP_TO_EDGE);
    depthSampler.toggleMipMaps(false);
    // Use greater or equal depth compare function, but depth comparison is disabled, anyway.
    depthSampler._cmpFunc = CMP_FUNC_GEQUAL; 
    TextureDescriptor depthDescriptor(TEXTURE_2D_MS, DEPTH_COMPONENT32F, FLOAT_32);
    depthDescriptor.setSampler(depthSampler);
    // The depth render target uses a HierarchicalZ buffer to help with occlusion culling
    // Must be as close as possible to the screen's depth buffer
    SamplerDescriptor depthSamplerHiZ;
    depthSamplerHiZ.setFilters(TEXTURE_FILTER_NEAREST_MIPMAP_NEAREST, TEXTURE_FILTER_NEAREST);
    depthSamplerHiZ.setWrapMode(TEXTURE_CLAMP_TO_EDGE);
    depthSamplerHiZ.toggleMipMaps(true);
    TextureDescriptor depthDescriptorHiZ(TEXTURE_2D_MS, DEPTH_COMPONENT32F, FLOAT_32);
    depthDescriptorHiZ.setSampler(depthSamplerHiZ);
    // Add the attachments to the render targets
    _renderTarget[RENDER_TARGET_SCREEN]->AddAttachment(screenDescriptor, TextureDescriptor::Color0);
    _renderTarget[RENDER_TARGET_SCREEN]->AddAttachment(depthDescriptor,  TextureDescriptor::Depth);
    _renderTarget[RENDER_TARGET_SCREEN]->Create(resolution.width, resolution.height);
    _renderTarget[RENDER_TARGET_DEPTH]->AddAttachment(depthDescriptorHiZ, TextureDescriptor::Depth);
    _renderTarget[RENDER_TARGET_DEPTH]->toggleColorWrites(false);
    _renderTarget[RENDER_TARGET_DEPTH]->Create(resolution.width, resolution.height);
    // If we enabled anaglyph rendering, we need a second target, identical to the screen target 
    // used to render the scene at an offset
    if(_enableAnaglyph){
        _renderTarget[RENDER_TARGET_ANAGLYPH] = newFB(true);
        _renderTarget[RENDER_TARGET_ANAGLYPH]->AddAttachment(screenDescriptor, TextureDescriptor::Color0);
        _renderTarget[RENDER_TARGET_ANAGLYPH]->AddAttachment(depthDescriptor,  TextureDescriptor::Depth);
        _renderTarget[RENDER_TARGET_ANAGLYPH]->Create(resolution.width, resolution.height);
    }
    // If render targets ready, we initialize our post processing system    
    PostFX::getInstance().init(resolution);
    // We also add a couple of useful cameras used by this class. One for rendering in 2D and one for generating cube maps
    
    Application::getInstance().getKernel()->getCameraMgr().addNewCamera("2DRenderCamera", _2DCamera);
    Application::getInstance().getKernel()->getCameraMgr().addNewCamera("_gfxCubeCamera", _cubeCamera);
    // Initialized our HierarchicalZ construction shader (takes a depth attachment and down-samples it for every mip level)
    _HIZConstructProgram = CreateResource<ShaderProgram>(ResourceDescriptor("HiZConstruct"));
    _HIZConstructProgram->UniformTexture("LastMip", 0);
    // Store our target z distances
    _gpuBlock._ZPlanesCombined.z = ParamHandler::getInstance().getParam<F32>("rendering.zNear");
    _gpuBlock._ZPlanesCombined.w = ParamHandler::getInstance().getParam<F32>("rendering.zFar");
    // Create a separate loading thread that shares resources with the main rendering context
    _loaderThread = MemoryManager_NEW std::thread(&GFXDevice::createLoaderThread, this);
    // Register a 2D function used for previewing the depth buffer.
#   ifdef _DEBUG
        add2DRenderFunction(DELEGATE_BIND(&GFXDevice::previewDepthBuffer, this), 0);
#   endif
    // We start of with a forward plus renderer
    setRenderer(MemoryManager_NEW ForwardPlusRenderer());
    ParamHandler::getInstance().setParam<bool>("rendering.previewDepthBuffer", false);
    // Everything is ready from the rendering point of view
    return NO_ERR;
}

/// Revert everything that was set up in initRenderingAPI()
void GFXDevice::closeRenderingApi() {
    // Delete the internal shader
    RemoveResource(_HIZConstructProgram);
    // Destroy our post processing system
    PRINT_FN( Locale::get( "STOP_POST_FX" ) );
    PostFX::destroyInstance();
    // Delete the renderer implementation
    PRINT_FN(Locale::get("CLOSING_RENDERER"));
    MemoryManager::DELETE( _renderer );
    // Delete our default render state blocks
    MemoryManager::DELETE_HASHMAP(_stateBlockMap);
    // Destroy all of the immediate mode emulation primitives created during runtime
    MemoryManager::DELETE_VECTOR(_imInterfaces);
    // Destroy all rendering passes and rendering bins
    RenderPassManager::destroyInstance();
    // Delete all of our rendering targets
    for ( Framebuffer*& renderTarget : _renderTarget ) {
        MemoryManager::DELETE( renderTarget );
    }
    // Delete our shader buffers
    MemoryManager::DELETE( _gfxDataBuffer );
    MemoryManager::DELETE( _nodeBuffer );
    // Close the shader manager
    ShaderManager::getInstance().destroy();
    // Close the rendering API
    _api->closeRenderingApi();
    // Wait for the loading thread to terminate
    _loaderThread->join();
    // And delete it
    MemoryManager::DELETE( _loaderThread );

    switch ( _apiId ) {
        case RenderAPI::OpenGL:
        case RenderAPI::OpenGLES: {
            GL_API::destroyInstance();
        } break;
        case RenderAPI::Direct3D: {
            DX_API::destroyInstance();
        } break;
        case RenderAPI::Mantle: {
        }break;
        case RenderAPI::None: {
        }break;
        default: {
        }break;
    };
}

/// After a swap buffer call, the CPU may be idle waiting for the GPU to draw to the screen, so we try to do some processing
void GFXDevice::idle() {
    // Update the zPlanes if needed
    _gpuBlock._ZPlanesCombined.z = ParamHandler::getInstance().getParam<F32>("rendering.zNear");
    _gpuBlock._ZPlanesCombined.w = ParamHandler::getInstance().getParam<F32>("rendering.zFar");
    // Pass the idle call to the post processing system
    PostFX::getInstance().idle();
    // And to the shader manager
    ShaderManager::getInstance().idle();
}

void GFXDevice::beginFrame() {
    _api->beginFrame();
    setStateBlock(_defaultStateBlockHash);
}

void GFXDevice::endFrame() { 
    // Max number of frames before an unused primitive is deleted (default: 180 - 3 seconds at 60 fps)
    static const I32 IM_MAX_FRAMES_ZOMBIE_COUNT = 180;

    if (Application::getInstance().mainLoopActive()) {
        // Render all 2D debug info and call API specific flush function
        toggle2D(true);
        for (std::pair<U32, DELEGATE_CBK<> >& callbackFunction : _2dRenderQueue) {
            callbackFunction.second();
        }
        toggle2D(false);

        //Remove dead primitives in 3 steps (or we could automate this with shared_ptr?):
        //1) Partition the vector in 2 parts: valid objects first, zombie objects second
        vectorImpl<IMPrimitive* >::iterator zombie = std::partition(_imInterfaces.begin(), _imInterfaces.end(),
                                                                    [](IMPrimitive* const priv){
                                                                        if(!priv->_canZombify) return true;
                                                                        return priv->zombieCounter() < IM_MAX_FRAMES_ZOMBIE_COUNT;
                                                                    });
        //2) For every zombie object, free the memory it's using
        for ( vectorImpl<IMPrimitive *>::iterator i = zombie ; i != _imInterfaces.end(); ++i ) {
            MemoryManager::DELETE( *i );
        }
        //3) Remove all the zombie objects once the memory is freed
        _imInterfaces.erase(zombie, _imInterfaces.end());
    
        FRAME_COUNT++;
        FRAME_DRAW_CALLS_PREV = FRAME_DRAW_CALLS;
        FRAME_DRAW_CALLS = 0;
    }

    _api->endFrame();  
}

Renderer* GFXDevice::getRenderer() const {
    DIVIDE_ASSERT(_renderer != nullptr, "GFXDevice error: Renderer requested but not created!"); 
    return _renderer;
}

void GFXDevice::setRenderer(Renderer* const renderer) {
    DIVIDE_ASSERT(renderer != nullptr, "GFXDevice error: Tried to create an invalid renderer!"); 
    MemoryManager::SAFE_UPDATE( _renderer, renderer );
}

ErrorCode GFXDevice::createAPIInstance() {
    DIVIDE_ASSERT(_api == nullptr, "GFXDevice error: initRenderingAPI called twice!");
    switch (_apiId) {
        case RenderAPI::OpenGL:
        case RenderAPI::OpenGLES: {
            _api = &GL_API::getOrCreateInstance();
        } break;
        case RenderAPI::Direct3D: {
            _api = &DX_API::getOrCreateInstance();
            ERROR_FN(Locale::get("ERROR_GFX_DEVICE_API"));
            return GFX_NOT_SUPPORTED;
        } break;
        case RenderAPI::Mantle: {
            ERROR_FN(Locale::get("ERROR_GFX_DEVICE_API"));
            return GFX_NOT_SUPPORTED;
        }break;
        case RenderAPI::None: {
            ERROR_FN(Locale::get("ERROR_GFX_DEVICE_API"));
            return GFX_NOT_SUPPORTED;
        }break;
        default: {
            ERROR_FN(Locale::get("ERROR_GFX_DEVICE_API"));
            return GFX_NON_SPECIFIED;
        }break;
    };

    return NO_ERR;
}

};

Commits for Divide-Framework/trunk/Source Code/Platform/Video/GFXDeviceState.cpp

Diff revisions: vs.
Revision Author Commited Message
337 Diff Diff IonutCava picture IonutCava Wed 17 Dec, 2014 17:25:16 +0000

[Ionut]
- Replaced all tabs with 4 spaces (some spacing may be off now. no way to check all the files.)
- Moved implementation details for ParamHandler, BoundingBox, BoundingSphere and ProfileTimer to proper .inl and .cpp files. (more to follow)
- Update all forward declared enums with the required storage type (as requested by the C++11 standard)

334 IonutCava picture IonutCava Wed 10 Dec, 2014 17:21:22 +0000

[Ionut]
- Reorganized the Hardware project and renamed to "Platform"
- Reorganized the Server project