Subversion Repository Public Repository

Divide-Framework

This repository has no backups
This repository's network speed is throttled to 100KB/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
// ©2015-2016 Cameron Desrochers. Distributed under the terms of the simplified
// BSD license, available at the top of concurrentqueue.h.
// Uses Jeff Preshing's semaphore implementation (under the terms of its
// separate zlib license, embedded below).

#pragma once

#include "concurrentqueue.h"
#include <type_traits>
#include <cerrno>
#include <memory>
#include <chrono>
#include <ctime>

#if defined(_WIN32)
// Avoid including windows.h in a header; we only need a handful of
// items, so we'll redeclare them here (this is relatively safe since
// the API generally has to remain stable between Windows versions).
// I know this is an ugly hack but it still beats polluting the global
// namespace with thousands of generic names or adding a .cpp for nothing.
extern "C" {
	struct _SECURITY_ATTRIBUTES;
	__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
	__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
	__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
	__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
}
#elif defined(__MACH__)
#include <mach/mach.h>
#elif defined(__unix__)
#include <semaphore.h>
#endif

namespace moodycamel
{
namespace details
{
	// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
	// portable + lightweight semaphore implementations, originally from
	// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
	// LICENSE:
	// Copyright (c) 2015 Jeff Preshing
	//
	// This software is provided 'as-is', without any express or implied
	// warranty. In no event will the authors be held liable for any damages
	// arising from the use of this software.
	//
	// Permission is granted to anyone to use this software for any purpose,
	// including commercial applications, and to alter it and redistribute it
	// freely, subject to the following restrictions:
	//
	// 1. The origin of this software must not be misrepresented; you must not
	//	claim that you wrote the original software. If you use this software
	//	in a product, an acknowledgement in the product documentation would be
	//	appreciated but is not required.
	// 2. Altered source versions must be plainly marked as such, and must not be
	//	misrepresented as being the original software.
	// 3. This notice may not be removed or altered from any source distribution.
	namespace mpmc_sema
	{
#if defined(_WIN32)
		class Semaphore
		{
		private:
			void* m_hSema;
			
			Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
			Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;

		public:
			Semaphore(int initialCount = 0)
			{
				assert(initialCount >= 0);
				const long maxLong = 0x7fffffff;
				m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
			}

			~Semaphore()
			{
				CloseHandle(m_hSema);
			}

			void wait()
			{
				const unsigned long infinite = 0xffffffff;
				WaitForSingleObject(m_hSema, infinite);
			}
			
			bool try_wait()
			{
				const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
				return WaitForSingleObject(m_hSema, 0) != RC_WAIT_TIMEOUT;
			}
			
			bool timed_wait(std::uint64_t usecs)
			{
				const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
				return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) != RC_WAIT_TIMEOUT;
			}

			void signal(int count = 1)
			{
				ReleaseSemaphore(m_hSema, count, nullptr);
			}
		};
#elif defined(__MACH__)
		//---------------------------------------------------------
		// Semaphore (Apple iOS and OSX)
		// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
		//---------------------------------------------------------
		class Semaphore
		{
		private:
			semaphore_t m_sema;

			Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
			Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;

		public:
			Semaphore(int initialCount = 0)
			{
				assert(initialCount >= 0);
				semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
			}

			~Semaphore()
			{
				semaphore_destroy(mach_task_self(), m_sema);
			}

			void wait()
			{
				semaphore_wait(m_sema);
			}
			
			bool try_wait()
			{
				return timed_wait(0);
			}
			
			bool timed_wait(std::uint64_t timeout_usecs)
			{
				mach_timespec_t ts;
				ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
				ts.tv_nsec = (timeout_usecs % 1000000) * 1000;

				// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
				kern_return_t rc = semaphore_timedwait(m_sema, ts);

				return rc != KERN_OPERATION_TIMED_OUT;
			}

			void signal()
			{
				semaphore_signal(m_sema);
			}

			void signal(int count)
			{
				while (count-- > 0)
				{
					semaphore_signal(m_sema);
				}
			}
		};
#elif defined(__unix__)
		//---------------------------------------------------------
		// Semaphore (POSIX, Linux)
		//---------------------------------------------------------
		class Semaphore
		{
		private:
			sem_t m_sema;

			Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
			Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;

		public:
			Semaphore(int initialCount = 0)
			{
				assert(initialCount >= 0);
				sem_init(&m_sema, 0, initialCount);
			}

			~Semaphore()
			{
				sem_destroy(&m_sema);
			}

			void wait()
			{
				// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
				int rc;
				do {
					rc = sem_wait(&m_sema);
				} while (rc == -1 && errno == EINTR);
			}

			bool try_wait()
			{
				int rc;
				do {
					rc = sem_trywait(&m_sema);
				} while (rc == -1 && errno == EINTR);
				return !(rc == -1 && errno == EAGAIN);
			}

			bool timed_wait(std::uint64_t usecs)
			{
				struct timespec ts;
				const int usecs_in_1_sec = 1000000;
				const int nsecs_in_1_sec = 1000000000;
				clock_gettime(CLOCK_REALTIME, &ts);
				ts.tv_sec += usecs / usecs_in_1_sec;
				ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000;
				// sem_timedwait bombs if you have more than 1e9 in tv_nsec
				// so we have to clean things up before passing it in
				if (ts.tv_nsec >= nsecs_in_1_sec) {
					ts.tv_nsec -= nsecs_in_1_sec;
					++ts.tv_sec;
				}

				int rc;
				do {
					rc = sem_timedwait(&m_sema, &ts);
				} while (rc == -1 && errno == EINTR);
				return !(rc == -1 && errno == ETIMEDOUT);
			}

			void signal()
			{
				sem_post(&m_sema);
			}

			void signal(int count)
			{
				while (count-- > 0)
				{
					sem_post(&m_sema);
				}
			}
		};
#else
#error Unsupported platform! (No semaphore wrapper available)
#endif

		//---------------------------------------------------------
		// LightweightSemaphore
		//---------------------------------------------------------
		class LightweightSemaphore
		{
		public:
			typedef std::make_signed<std::size_t>::type ssize_t;

		private:
			std::atomic<ssize_t> m_count;
			Semaphore m_sema;

			bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
			{
				ssize_t oldCount;
				// Is there a better way to set the initial spin count?
				// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
				// as threads start hitting the kernel semaphore.
				int spin = 10000;
				while (--spin >= 0)
				{
					oldCount = m_count.load(std::memory_order_relaxed);
					if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
						return true;
					std::atomic_signal_fence(std::memory_order_acquire);	 // Prevent the compiler from collapsing the loop.
				}
				oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
				if (oldCount > 0)
					return true;
				if (timeout_usecs < 0)
				{
					m_sema.wait();
					return true;
				}
				if (m_sema.timed_wait((std::uint64_t)timeout_usecs))
					return true;
				// At this point, we've timed out waiting for the semaphore, but the
				// count is still decremented indicating we may still be waiting on
				// it. So we have to re-adjust the count, but only if the semaphore
				// wasn't signaled enough times for us too since then. If it was, we
				// need to release the semaphore too.
				while (true)
				{
					oldCount = m_count.load(std::memory_order_acquire);
					if (oldCount >= 0 && m_sema.try_wait())
						return true;
					if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
						return false;
				}
			}

			ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
			{
				assert(max > 0);
				ssize_t oldCount;
				int spin = 10000;
				while (--spin >= 0)
				{
					oldCount = m_count.load(std::memory_order_relaxed);
					if (oldCount > 0)
					{
						ssize_t newCount = oldCount > max ? oldCount - max : 0;
						if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
							return oldCount - newCount;
					}
					std::atomic_signal_fence(std::memory_order_acquire);
				}
				oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
				if (oldCount <= 0)
				{
					if (timeout_usecs < 0)
						m_sema.wait();
					else if (!m_sema.timed_wait((std::uint64_t)timeout_usecs))
					{
						while (true)
						{
							oldCount = m_count.load(std::memory_order_acquire);
							if (oldCount >= 0 && m_sema.try_wait())
								break;
							if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
								return 0;
						}
					}
				}
				if (max > 1)
					return 1 + tryWaitMany(max - 1);
				return 1;
			}

		public:
			LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount)
			{
				assert(initialCount >= 0);
			}

			bool tryWait()
			{
				ssize_t oldCount = m_count.load(std::memory_order_relaxed);
				while (oldCount > 0)
				{
					if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
						return true;
				}
				return false;
			}

			void wait()
			{
				if (!tryWait())
					waitWithPartialSpinning();
			}

			bool wait(std::int64_t timeout_usecs)
			{
				return tryWait() || waitWithPartialSpinning(timeout_usecs);
			}

			// Acquires between 0 and (greedily) max, inclusive
			ssize_t tryWaitMany(ssize_t max)
			{
				assert(max >= 0);
				ssize_t oldCount = m_count.load(std::memory_order_relaxed);
				while (oldCount > 0)
				{
					ssize_t newCount = oldCount > max ? oldCount - max : 0;
					if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
						return oldCount - newCount;
				}
				return 0;
			}

			// Acquires at least one, and (greedily) at most max
			ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
			{
				assert(max >= 0);
				ssize_t result = tryWaitMany(max);
				if (result == 0 && max > 0)
					result = waitManyWithPartialSpinning(max, timeout_usecs);
				return result;
			}
			
			ssize_t waitMany(ssize_t max)
			{
				ssize_t result = waitMany(max, -1);
				assert(result > 0);
				return result;
			}

			void signal(ssize_t count = 1)
			{
				assert(count >= 0);
				ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
				ssize_t toRelease = -oldCount < count ? -oldCount : count;
				if (toRelease > 0)
				{
					m_sema.signal((int)toRelease);
				}
			}
			
			ssize_t availableApprox() const
			{
				ssize_t count = m_count.load(std::memory_order_relaxed);
				return count > 0 ? count : 0;
			}
		};
	}	// end namespace mpmc_sema
}	// end namespace details


// This is a blocking version of the queue. It has an almost identical interface to
// the normal non-blocking version, with the addition of various wait_dequeue() methods
// and the removal of producer-specific dequeue methods.
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
class BlockingConcurrentQueue
{
private:
	typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
	typedef details::mpmc_sema::LightweightSemaphore LightweightSemaphore;

public:
	typedef typename ConcurrentQueue::producer_token_t producer_token_t;
	typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
	
	typedef typename ConcurrentQueue::index_t index_t;
	typedef typename ConcurrentQueue::size_t size_t;
	typedef typename std::make_signed<size_t>::type ssize_t;
	
	static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
	static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
	static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
	static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
	static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
	static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
	static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
	
public:
	// Creates a queue with at least `capacity` element slots; note that the
	// actual number of elements that can be inserted without additional memory
	// allocation depends on the number of producers and the block size (e.g. if
	// the block size is equal to `capacity`, only a single block will be allocated
	// up-front, which means only a single producer will be able to enqueue elements
	// without an extra allocation -- blocks aren't shared between producers).
	// This method is not thread safe -- it is up to the user to ensure that the
	// queue is fully constructed before it starts being used by other threads (this
	// includes making the memory effects of construction visible, possibly with a
	// memory barrier).
	explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
		: inner(capacity), sema(create<LightweightSemaphore>(), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
	{
		assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
		if (!sema) {
			MOODYCAMEL_THROW(std::bad_alloc());
		}
	}
	
	BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
		: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore>(), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
	{
		assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
		if (!sema) {
			MOODYCAMEL_THROW(std::bad_alloc());
		}
	}
	
	// Disable copying and copy assignment
	BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
	BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
	
	// Moving is supported, but note that it is *not* a thread-safe operation.
	// Nobody can use the queue while it's being moved, and the memory effects
	// of that move must be propagated to other threads before they can use it.
	// Note: When a queue is moved, its tokens are still valid but can only be
	// used with the destination queue (i.e. semantically they are moved along
	// with the queue itself).
	BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
		: inner(std::move(other.inner)), sema(std::move(other.sema))
	{ }
	
	inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
	{
		return swap_internal(other);
	}
	
	// Swaps this queue's state with the other's. Not thread-safe.
	// Swapping two queues does not invalidate their tokens, however
	// the tokens that were created for one queue must be used with
	// only the swapped queue (i.e. the tokens are tied to the
	// queue's movable state, not the object itself).
	inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
	{
		swap_internal(other);
	}
	
private:
	BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
	{
		if (this == &other) {
			return *this;
		}
		
		inner.swap(other.inner);
		sema.swap(other.sema);
		return *this;
	}
	
public:
	// Enqueues a single item (by copying it).
	// Allocates memory if required. Only fails if memory allocation fails (or implicit
	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
	// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Thread-safe.
	inline bool enqueue(T const& item)
	{
		if (details::likely(inner.enqueue(item))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by moving it, if possible).
	// Allocates memory if required. Only fails if memory allocation fails (or implicit
	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
	// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Thread-safe.
	inline bool enqueue(T&& item)
	{
		if (details::likely(inner.enqueue(std::move(item)))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by copying it) using an explicit producer token.
	// Allocates memory if required. Only fails if memory allocation fails (or
	// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Thread-safe.
	inline bool enqueue(producer_token_t const& token, T const& item)
	{
		if (details::likely(inner.enqueue(token, item))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by moving it, if possible) using an explicit producer token.
	// Allocates memory if required. Only fails if memory allocation fails (or
	// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Thread-safe.
	inline bool enqueue(producer_token_t const& token, T&& item)
	{
		if (details::likely(inner.enqueue(token, std::move(item)))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues several items.
	// Allocates memory if required. Only fails if memory allocation fails (or
	// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
	// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
	// Thread-safe.
	template<typename It>
	inline bool enqueue_bulk(It itemFirst, size_t count)
	{
		if (details::likely(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
			return true;
		}
		return false;
	}
	
	// Enqueues several items using an explicit producer token.
	// Allocates memory if required. Only fails if memory allocation fails
	// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
	// Note: Use std::make_move_iterator if the elements should be moved
	// instead of copied.
	// Thread-safe.
	template<typename It>
	inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
	{
		if (details::likely(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by copying it).
	// Does not allocate memory. Fails if not enough room to enqueue (or implicit
	// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
	// is 0).
	// Thread-safe.
	inline bool try_enqueue(T const& item)
	{
		if (inner.try_enqueue(item)) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by moving it, if possible).
	// Does not allocate memory (except for one-time implicit producer).
	// Fails if not enough room to enqueue (or implicit production is
	// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
	// Thread-safe.
	inline bool try_enqueue(T&& item)
	{
		if (inner.try_enqueue(std::move(item))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by copying it) using an explicit producer token.
	// Does not allocate memory. Fails if not enough room to enqueue.
	// Thread-safe.
	inline bool try_enqueue(producer_token_t const& token, T const& item)
	{
		if (inner.try_enqueue(token, item)) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues a single item (by moving it, if possible) using an explicit producer token.
	// Does not allocate memory. Fails if not enough room to enqueue.
	// Thread-safe.
	inline bool try_enqueue(producer_token_t const& token, T&& item)
	{
		if (inner.try_enqueue(token, std::move(item))) {
			sema->signal();
			return true;
		}
		return false;
	}
	
	// Enqueues several items.
	// Does not allocate memory (except for one-time implicit producer).
	// Fails if not enough room to enqueue (or implicit production is
	// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
	// Note: Use std::make_move_iterator if the elements should be moved
	// instead of copied.
	// Thread-safe.
	template<typename It>
	inline bool try_enqueue_bulk(It itemFirst, size_t count)
	{
		if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
			return true;
		}
		return false;
	}
	
	// Enqueues several items using an explicit producer token.
	// Does not allocate memory. Fails if not enough room to enqueue.
	// Note: Use std::make_move_iterator if the elements should be moved
	// instead of copied.
	// Thread-safe.
	template<typename It>
	inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
	{
		if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
			sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
			return true;
		}
		return false;
	}
	
	
	// Attempts to dequeue from the queue.
	// Returns false if all producer streams appeared empty at the time they
	// were checked (so, the queue is likely but not guaranteed to be empty).
	// Never allocates. Thread-safe.
	template<typename U>
	inline bool try_dequeue(U& item)
	{
		if (sema->tryWait()) {
			while (!inner.try_dequeue(item)) {
				continue;
			}
			return true;
		}
		return false;
	}
	
	// Attempts to dequeue from the queue using an explicit consumer token.
	// Returns false if all producer streams appeared empty at the time they
	// were checked (so, the queue is likely but not guaranteed to be empty).
	// Never allocates. Thread-safe.
	template<typename U>
	inline bool try_dequeue(consumer_token_t& token, U& item)
	{
		if (sema->tryWait()) {
			while (!inner.try_dequeue(token, item)) {
				continue;
			}
			return true;
		}
		return false;
	}
	
	// Attempts to dequeue several elements from the queue.
	// Returns the number of items actually dequeued.
	// Returns 0 if all producer streams appeared empty at the time they
	// were checked (so, the queue is likely but not guaranteed to be empty).
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t try_dequeue_bulk(It itemFirst, size_t max)
	{
		size_t count = 0;
		max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
		}
		return count;
	}
	
	// Attempts to dequeue several elements from the queue using an explicit consumer token.
	// Returns the number of items actually dequeued.
	// Returns 0 if all producer streams appeared empty at the time they
	// were checked (so, the queue is likely but not guaranteed to be empty).
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
	{
		size_t count = 0;
		max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
		}
		return count;
	}
	
	
	
	// Blocks the current thread until there's something to dequeue, then
	// dequeues it.
	// Never allocates. Thread-safe.
	template<typename U>
	inline void wait_dequeue(U& item)
	{
		sema->wait();
		while (!inner.try_dequeue(item)) {
			continue;
		}
	}

	// Blocks the current thread until either there's something to dequeue
	// or the timeout (specified in microseconds) expires. Returns false
	// without setting `item` if the timeout expires, otherwise assigns
	// to `item` and returns true.
	// Using a negative timeout indicates an indefinite timeout,
	// and is thus functionally equivalent to calling wait_dequeue.
	// Never allocates. Thread-safe.
	template<typename U>
	inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
	{
		if (!sema->wait(timeout_usecs)) {
			return false;
		}
		while (!inner.try_dequeue(item)) {
			continue;
		}
		return true;
	}
    
    // Blocks the current thread until either there's something to dequeue
	// or the timeout expires. Returns false without setting `item` if the
    // timeout expires, otherwise assigns to `item` and returns true.
	// Never allocates. Thread-safe.
	template<typename U, typename Rep, typename Period>
	inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
    {
        return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
    }
	
	// Blocks the current thread until there's something to dequeue, then
	// dequeues it using an explicit consumer token.
	// Never allocates. Thread-safe.
	template<typename U>
	inline void wait_dequeue(consumer_token_t& token, U& item)
	{
		sema->wait();
		while (!inner.try_dequeue(token, item)) {
			continue;
		}
	}
	
	// Blocks the current thread until either there's something to dequeue
	// or the timeout (specified in microseconds) expires. Returns false
	// without setting `item` if the timeout expires, otherwise assigns
	// to `item` and returns true.
	// Using a negative timeout indicates an indefinite timeout,
	// and is thus functionally equivalent to calling wait_dequeue.
	// Never allocates. Thread-safe.
	template<typename U>
	inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
	{
		if (!sema->wait(timeout_usecs)) {
			return false;
		}
		while (!inner.try_dequeue(token, item)) {
			continue;
		}
		return true;
	}
    
    // Blocks the current thread until either there's something to dequeue
	// or the timeout expires. Returns false without setting `item` if the
    // timeout expires, otherwise assigns to `item` and returns true.
	// Never allocates. Thread-safe.
	template<typename U, typename Rep, typename Period>
	inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
    {
        return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
    }
	
	// Attempts to dequeue several elements from the queue.
	// Returns the number of items actually dequeued, which will
	// always be at least one (this method blocks until the queue
	// is non-empty) and at most max.
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
	{
		size_t count = 0;
		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
		}
		return count;
	}
	
	// Attempts to dequeue several elements from the queue.
	// Returns the number of items actually dequeued, which can
	// be 0 if the timeout expires while waiting for elements,
	// and at most max.
	// Using a negative timeout indicates an indefinite timeout,
	// and is thus functionally equivalent to calling wait_dequeue_bulk.
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
	{
		size_t count = 0;
		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
		}
		return count;
	}
    
    // Attempts to dequeue several elements from the queue.
	// Returns the number of items actually dequeued, which can
	// be 0 if the timeout expires while waiting for elements,
	// and at most max.
	// Never allocates. Thread-safe.
	template<typename It, typename Rep, typename Period>
	inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
    {
        return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
    }
	
	// Attempts to dequeue several elements from the queue using an explicit consumer token.
	// Returns the number of items actually dequeued, which will
	// always be at least one (this method blocks until the queue
	// is non-empty) and at most max.
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
	{
		size_t count = 0;
		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
		}
		return count;
	}
	
	// Attempts to dequeue several elements from the queue using an explicit consumer token.
	// Returns the number of items actually dequeued, which can
	// be 0 if the timeout expires while waiting for elements,
	// and at most max.
	// Using a negative timeout indicates an indefinite timeout,
	// and is thus functionally equivalent to calling wait_dequeue_bulk.
	// Never allocates. Thread-safe.
	template<typename It>
	inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
	{
		size_t count = 0;
		max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
		while (count != max) {
			count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
		}
		return count;
	}
	
	// Attempts to dequeue several elements from the queue using an explicit consumer token.
	// Returns the number of items actually dequeued, which can
	// be 0 if the timeout expires while waiting for elements,
	// and at most max.
	// Never allocates. Thread-safe.
	template<typename It, typename Rep, typename Period>
	inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
    {
        return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
    }
	
	
	// Returns an estimate of the total number of elements currently in the queue. This
	// estimate is only accurate if the queue has completely stabilized before it is called
	// (i.e. all enqueue and dequeue operations have completed and their memory effects are
	// visible on the calling thread, and no further operations start while this method is
	// being called).
	// Thread-safe.
	inline size_t size_approx() const
	{
		return (size_t)sema->availableApprox();
	}
	
	
	// Returns true if the underlying atomic variables used by
	// the queue are lock-free (they should be on most platforms).
	// Thread-safe.
	static bool is_lock_free()
	{
		return ConcurrentQueue::is_lock_free();
	}
	

private:
	template<typename U>
	static inline U* create()
	{
		auto p = (Traits::malloc)(sizeof(U));
		return p != nullptr ? new (p) U : nullptr;
	}
	
	template<typename U, typename A1>
	static inline U* create(A1&& a1)
	{
		auto p = (Traits::malloc)(sizeof(U));
		return p != nullptr ? new (p) U(std::forward<A1>(a1)) : nullptr;
	}
	
	template<typename U>
	static inline void destroy(U* p)
	{
		if (p != nullptr) {
			p->~U();
		}
		(Traits::free)(p);
	}
	
private:
	ConcurrentQueue inner;
	std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
};


template<typename T, typename Traits>
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
{
	a.swap(b);
}

}	// end namespace moodycamel

Commits for Divide-Framework/trunk/Source Code/Libs/ConcurrentQueue/blockingconcurrentqueue.h

Diff revisions: vs.
Revision Author Commited Message
1012 Diff Diff IonutCava picture IonutCava Mon 15 Jan, 2018 17:21:32 +0000

[Ionut]
- Update boost to v1.66
- Performance optimizations

710 Diff Diff IonutCava picture IonutCava Fri 20 May, 2016 16:24:40 +0000

[IonutCava]
- Code cleanup
- Initial work on Scene loading and unloading with and without unloading assets:
— Need to change AIManager from a Singleton to a per-scene component

665 IonutCava picture IonutCava Thu 31 Mar, 2016 15:50:03 +0000

[IonutCava]
- Added proper multi-threaded logging support for the Console system using moodycamel::ConcurrentQueue (https://github.com/cameron314/concurrentqueue)